Цинковый кек


Вельцевание цинковых кеков

    

    Рис.2 – Принципиальная технологическая  схема переработки сульфидных цинковых концентратов гидрометаллургическим  способом.

    По  этому способу цинк выщелачивают (растворяют) раствором серной кислоты  из предварительно-обожженного концентрата (огарка). При выщелачивании цинк переходит в раствор в виде сернокислого цинка по реакции:  

    При выщелачивании цинкового огарка в раствор частично переходят  содержащиеся в нем компоненты (Cu, Cd, Fe, As и др.). Качество, получаемого электролитическим осаждением, цинка зависит чистоты раствора; чем чище поступает на электролиз раствор, тем более чистый получается товарный цинк. Поэтому перед электролизом раствор тщательно очищают от примесей.

    Процесс электролитического осаждения цинка  из очищенного раствора (электролита) протекает по следующей суммарной  реакции: 

    Цинк  при электролизе осаждается на катоде, а на аноде регенерируется серная кислота, необходимая для выщелачивания свежих порций огарка, и выделяется кислород. Катодные осадки цинка переплавляют и разливают в слитки.

    Кек (нерастворимый остаток), получаемый после выщелачивания, подвергают дополнительной переработке с целью доизвлечения из него цинка и других ценных компонентов.

  Многостадийность технологических схем переработки цинковых концентратов предопределяет образование на отдельных стадиях различных промежуточных продуктов и полупродуктов производства, в которые переходит много цинка и сопутствующих   элементов.

  Часть полупродуктов является внутренним оборотом производства и возвращается в шихту на различных стадиях переработки концентратов, но некоторые полупродукты выводят из производственного цикла и самостоятельно перерабатывают. Это в первую очередь цинковые кеки гидрометаллургического и раймовка  пирометаллургического производств, дроссы, пусьера и др. Цинковые кеки представляют собой конечный продукт гидрометаллургической переработки цинковых концентратов. Выход их зависит от состава исходного сырья.

  При богатых и чистых концентратах выход кеков составляет 20—25 %, а при концентратах среднего качества 40—45 % от массы исходного концентрата. Состав кеков приведен в таблице 1.

Табл.1 – Химический состав цинковых кеков, % 

        Кек Zn РЬ Си Cd Ag,

        г/т

        Fe
        1 21,9 6,4     170 31,1
        2 20,9 11,2 0,32 0,2 207 32,2
        3 20 10 0,25 0,20 425 25,0
        4 18,7 11,7 1,21 0,08 23,3
        5 23,7 4,8 1,28 29,3

Продолжение   табл.

        Кек Sобщ Sso4 SiO2 CaO MgO Mn
        1   2,33        
        2 4,7 2,6 0,40 1,05
        3 10 5,0 .   :  
        4 6,4 3,48 11,9 3,19 1,24 0,46
        5 5,14 1,51 11,7 1,96 0,28 0,86

1.2.2 Переработка цинковых кеков

    На  отдельных стадиях технологического процесса переработки цинковых концентратов образуются промежуточные продукты, требующие специальной переработки в самостоятельных циклах. К промежуточным продуктам гидрометаллургического производства цинка относятся цинксодержащие кеки от выщелачивания обожженных цинковых концентратов, а к промежуточным продуктам пирометаллургического производства цинка — раймовка дистилляционных печей, дроссы, пусьера. Рациональная переработка этих продуктов определяет степень общего извлечения цинка в производстве и общую степень комплексности использования концентратов.

      Гидрометаллургическая переработка цинковых кеков.

    Гидрометаллургические способы переработки цинковых кеков основаны на реакции разложения феррита цинка серной кислотой с переводом цинка и железа в растворимые сульфаты и на последующем выделении железа из раствора в виде различных труднорастворимых соединений (гидроксида, гетита, ярозита). Феррит цинка растворяется в концентрированных растворах серной кислоты при повышенной температуре.

    Гидрометаллургические способы переработки цинковых кеков в последние годы находят все более широкое применение. Поиски рациональной технологии привели к разработке большого числа вариантов, среди которых наибольшее распространение получили гетит-процессы и ярозит-процессы.

    Гетит-процесс. Цинковые кеки выщелачивают отработанным электролитом в течение 6—8 ч при 95 °С до остаточного содержания свободной серной кислоты 50 г/л. Полученный при этом свинцово-серебряный кек, содержащий 25 % РЬ и 3—4 % Zn, направляют на свинцовый завод. Выход кека составляет примерно 1/3 от массы исходных цинковых кеков.

      В растворе от выщелачивания  кеков значительная часть железа (~30 г/л) находится в виде Fe2(SO4)3. Для предупреждения преждевременного гидролиза железа (III) при нейтрализации раствора восстанавливают железо необожженным цинковым концентратом:

      Восстановление ведут при 97 °С в течение 3—4 ч. Полученный сульфидный кек, содержащий до 20 % Zn и 50 % S, направляют на обжиг вместе с исходным концентратом.

    Раствор, содержащий 20 г/л Н2SО4, 20—30 г/л двухвалентного железа и 1 с/л трехвалентного железа, подвергают нейтрализации. В качестве нейтрализатора используют огарок:

    Н2SО4  + ZnO = ZnSО4 +h3O

      Содержание h3SO4 в растворе снижают до 3 г/л. При этом осаждается железо (III). Сгущенный продукт после нейтрализации возвращают на выщелачивание, а из раствора осаждают гетит. Операцию проводят при 90—95 °С в течение 6 ч путем дальнейшей нейтрализации раствора огарком до рН=1,5-2,5 и окислением железа (II) кислородом воздуха. Окисление железа происходит быстрее в присутствии в растворе ионов Сu2+. Окисленное железо гидролизуется с образованием труднорастворимого гетита (FeOOH):

    Fe2(SО4)3 + 4h3O = 2FeOOH +3h3SO4

    Осадок  сравнительно хорошо сгущается и  фильтруется. Гетитный кек, содержащий до 50 % Fe и 3—4 % Zn, направляют в отвал, а раствор — на нейтральное выщелачивание. При гетит-процессе из цинковых кеков извлекают в раствор 80 % Zn и Cd и 70 % Си. Это позволяет повысить извлечение цинка по заводу в целом до 95—96 %•

    К достоинствам процесса, помимо высокого извлечения Zn, Cd и Cu, следует отнести очистку раствора на 60—70 % от таких примесей, как As, Sb, Ge, In, F, а также легкую фильтруемость осадка гетита [0,5—1,0 т/(м2-ч)] и использование недефицитных реагентов (сырой цинковый концентрат, огарок,

отработанный  электролит, воздух) и обычного оборудования.

    Ярозит-процесс. Цинковый кек обрабатывают раствором h3SO4 (150—200 г/л) при 80—90 °С в течение 4—6 ч. Остаток (в основном— это сульфат свинца, кремнезем, оксиды железа), обогащенный серебром и золотом, отделяют от раствора и направляют на свинцовый завод. Раствор, содержащий цинк, кадмий, медь и другие растворимые в серной кислоте примеси, с остаточной кислотностью 40—60 г/л h3SO4 подвергают нейтрализации огарком до 10 г/л h3SO4.

    Твердую фазу пульпы отделяют от раствора в  сгустителях. Сгущенную пульпу возвращают на выщелачивание кеков, а раствор направляют на очистку от железа. Очистку от железа ведут при 85—95 °С. Для окисления железа используют воздух, обогащенный кислородом, или пиролюзит. В раствор вводят поташ, соду или аммиачную воду, в зависимости от того, какой ярозит хотят получить; добавляют огарок для нейтрализации раствора до рН=1-1,5.

    Осадок  ярозита обрабатывают раствором  h3SO4 (~40 г/л), сгущают и фильтруют с промывкой. При осаждении ярозита происходит очистка раствора от многих примесей. Содержание примеси в осадке зависит от исходного содержания ее в растворе:

       Coc = kCp,  

      где Сoc  и Ср — содержание примеси в осадке и растворе,  %; k — коэффициент захвата.

    Величина  коэффициента захвата характеризует  степень извлечения примеси из раствора и концентрирования ее в осадке. В наибольшей степени с ярозитом соосаждаются следующие примеси (k = 5-13): As(V), Sb(III), In(III), Ga(III), Tl(I), Tl(III). В значительно меньшей степени соосаждаются (k=0,5-1,4): Сu(II), Ni(II), Со(II), Al(III), As(III), G (IV). Практически совсем не соосаждаются Cd(II), Mg(II), Mn(II), Cl-

    Соосаждение цинка с ярозитом незначительно, но при высокой концентрации цинка в растворе (до 160 г/л) его содержание в осадке может превысить 1 %  (по массе),

    Высокая поглотительная способность осадка ярозита по отношению ко многим ионам в растворе объясняется тем, что анионы типа AsO4 частично замещают в кристаллической решетке ярозитa сульфат-ион, а избыточный отрицательный заряд компенсируется замещением однозарядного катиона на двухзарядный (например, К+ на Zn2+). Ионы Ме3+ (In, Ga, Tl, Al) замещают Fe3+, ионы Тl+ частично замещают К.+, ионы F- замещают ионы ОН- и осаждаются в виде K3FeF6.

    Ярозит-процесс  завершается выделением железа из раствора в виде труднорастворимого двойного основного сульфата железа (III) и    щелочных металлов: Me2SO4∙Fe2(SО4)3∙4Fe(OH)3, где (Ме—Na+, K+, Nh5+).

    Осаждение железа в виде ярозита обеспечивает высокое извлечение цинка в целом по заводу (не ниже 95—96 %), а также свинца и благородных металлов в свинцово-серебряный кек (94—97%). Применение  ярозит-процесса для, переработки цинковых  кеков позволяет  регулировать на  заводе  баланс  растворов   по  сульфат- иону и по ионам Na+ и К+ .

    Пирометаллургическая  переработка цинковых кеков.

    К пирометаллургической переработке  цинкосодержащих кеков относится процесс вельцевания. 

1.3 Место процесса в общей технологической схеме

    В отечественной практике цинкового  производства вельцевание — наиболее распространенный пирометаллургический процесс восстановления цинка. В изучение и совершенствование вельц-процесса внесли вклад многие отечественные ученые и производственники: В.Л.Заблоцкая и В.И.Заблоцкий, Г.А.Комлев, Н.С.Крысенко, Н.В.Ходов, А.В.Колесников и др.

stud24.ru

Вельцевание цинковых кеков

    Сущность  процесса состоит в том, что цинксодержащий дисперсный материал смешивают с коксиком и при максимальной температуре, исключающей плавление материала, перемешивают шихту для равномерной газификации коксика и отгонки цинка по всей массе шихты. Такой процесс углетермического восстановления протекает интенсивно благодаря сильно развитой межфазной поверхности взаимодействующих веществ и тесному контакту восстановителя с восстанавливаемыми фазами при участии активного СО в момент его образования, а также благодаря отводу продуктов реакций из зоны протекания процессов восстановления.

    Сохранение  до конца процесса восстанавливаемого материала в твердом состоянии исключает растворение остаточных цинксодержащих фаз в общей массе материала. Поэтому вельцевание позволяет достичь низких остаточных концентраций цинка в переработанном материале.

    Дисперсность  твердого восстановителя (коксик) и твердых восстанавливаемых материалов исключает значительное возрастание внутридиффузионных сопротивлений процессу. Благодаря этому достигаются при достаточно больших скоростях восстановления низкие остаточные концентрации цинка в шихте.

    При вельцевании возгоны окисляются в непосредственной близости от поверхности шихты. Поэтому теплозатраты на эндотермические реакции восстановления в значительной мере компенсируются тепловыделением при окислительных реакциях. Непрерывное перемешивание шихты и противоток газа и шихты во вращающейся печи обеспечивают хороший теплоотъем шихтой от футеровки печи и от газового слоя вблизи шихты, который разогрет за счет сгорания возгонов. Благодаря этому вельц-процесс требует сравнительно небольшого удельного расхода коксика как топлива, главным образом на компенсацию тепло потерь с отходящими газами и через стенки вельц-печи.

      Вследствие перечисленных особенностей процесса вельцевание эффективно для переработки твердых дисперсных и небогатых по цинку промпродуктов цинкового, свинцового и других производств, перерабатывающих цинксодержащее сырье, а также промпродуктов обогащения и богатых окисленных цинковых и медно-цинковых руд. Процесс не ограничивает влажность исходных шихт. Он не требует высокой квалификации обслуживающего персонала благодаря устойчивости режима.

    Еще одним из способов является плавка цинковых кеков в шахтных и электрических печах.

    Кеки плавят в шахтной печи – газогенераторе. Восстановителем и топливом  служит кокс, вводимый в количестве 40 – 45%  от массы кека. Для лучшей отгонки цинка в шихту вводят известняк и кремнисты флюсы. Шихту перед плавкой брикетируют.

    В ходе плавки получают шлак, штейн, а  также пыль. Пыль улавливают в рукавных фильтрах и подвергают выщелачиванию  на цинковом заводе.  Очищенные от пыли печные газы, содержащие 23 – 25% СО. Используют как топливо для подогрева воздуха и других нужд.

    Заслуживает внимание способ электротермической переработки  шлаков. Цинковые кеки агломерируют с добавкой 15 – 20% гранулированных шлаков свинцовой плавки. Агломерат смешивают с остальной частью подсушенного шлака и плавят в закрытой электропечи с добавкой в шихту 2 – 3% кокса. Пары цинка и свинца конденсируются в жидкий металл в конденсаторе. В результате плавки  получают металл, шлак и штейн. Шлак плавят с добавкой извести и кокса на чугун. Вторичный шлак можно использовать как строительный материал.

    Вельц-процесс проводят во вращающихся трубчатых печах, в которых шихта перекатывается по внутренним стенкам барабана (отсюда и название, от немецкого слова walzen — катать, перекатывать).

    Процесс проводят при температуре  1000—1200°С и верхний предел температуры ограничивается жидкоплавкостью шихты, которую сохраняют в течение всего процесса в твердом состоянии. Остатки вельцевания — клинкер, разгружают из печи также в нерасплавленном виде. При температуре вельцевания парциальное давление паров  металлического цинка достигает атмосферного, в то время как окисленные соединения цинка малолетучи. Поэтому необходимо в шихту вводить восстановитель, обычно уголь и кокс.

    Химизм процессов, протекающих при вельцевании цинксодержащих   материалов,  выражается  следующими реакциями:

    В шихте:

    ZnO + C↔Znпар + CO - Q1                                             (1)

    ZnSO4 + 2C↔ZnS + 2СО2;                                                                                   (2)

    ZnO∙Fe2O3 + FeO↔ZnO + FeO∙Fe2O3                                                                  (3)

    В газовой фазе окисление СО обеспечивает поддержание температуры:

    2СО + О2 = 2СО2 + Q2                                                                             (4)

    СО2 + С↔2СО - Q3                                                                (5)

    а цинковые пары окисляются по реакции:

    2 Znnap + О2 = 2 ZnO + Q4                                                                       (6)

    и уносятся с газовым потоком в  пылеуловительную систему.

    В первой половине печи происходит практически  полное разложение сульфата цинка и частично разлагается феррит цинка. В результате увеличивается доля цинка в виде сульфида и оксида. Во второй половине печи доля оксида и ферритов цинка резко уменьшается благодаря протеканию реакций (1) и (3). В средней части печи происходит взаимодействие оксида цинка и кремнекислоты. 

    При этом доля силиката цинка возрастает.  Железо, всегда присутствующее в  поступающих  на  вельцевание кеках в виде ферритов цинка и свинца, магнетита и гематита, в процессе вельцевания активно восстанавливается из оксидных соединений до металлического железа во второй половине печи, что приводит к возгонке цинка из трудновосстановимых соединений — сульфида и силиката:

    ZnS + Fe→FeS + Znr;

    (2ZnO∙SiO2) + 2Fe→(2FeO∙SiO2) + 2Znr.

    Железо  также восстанавливает цинк из оксида:

    ZnO + Fe→FeO + Znr.

    Поэтому к концу вельцевания в реакционной массе печи снижается содержание цинка в виде сульфида, силиката, оксида. Остаточное содержание цинка в клинкере составляет 0,1—1,0 %. В клинкере  цинк  находится   в   виде  сульфида   (45%), силиката  (17%), алюминато-феррита (20 %), оксида (18 %).

    Железо  при вельцевании кеков способствует повышению извлечения цинка. Однако при 1180°С расплавляется эвтектика системы (2FeO∙SiO2)—FeO, которая служит причиной образования в печи настылей. Кроме того, науглероживание железа приводит к образованию чугуна, мелкие частицы которого свариваются в крупные шары. Поэтому желательно, чтобы в вельц-печи зона температур выше 1150°С была как можно короче.

    Свинец  представлен в кеке в основном в виде сульфата (60— 70%) и немного в виде феррита (10—15%), силиката (~10%), сульфида (5—10 %) При вельцевании сульфид и оксид свинца, об- ладающие достаточно высокой упругостью паров, возгоняются в га- зовую фазу.

    В первой половине печи происходит интенсивное  восстановление сульфата свинца до сульфида:

    PbSO4 + 2C→PbS + 2CO2.

    Часть сульфида свинца возгоняется, а другая часть, не успевшая улетучиться, сплавляется с сульфидами меди и железа, образуя штейн.

    Некоторое количество сульфата свинца диссоциирует с образованием оксида:

      PbSO4↔PbO + SO3.

    Между   сульфатом, сульфидом и оксидом   могут   происходить реакции,   сопровождающиеся   выделением   металлического   свинца:

    PbS+PbSO4=2Pb+2SO2;

    PbS+2PbO=3Pb+SO2.

    Металлический свинец не возгоняется и пропитывает  твердые частицы шихты. При большом содержании в кеке свинца прогревание шихты следует вести медленно, чтобы соединения свинца возгонялись, не успев восстановиться до металла. В противном случае свинец стекает к разгрузочному концу печи, пропитывает клинкер и делает его тестообразным, увеличивая потери свинца и цинка.

    Остаточное  содержание свинца в клинкере составляет 0,5—0,8 %. В клинкере свинец представлен в форме металла (40 %), сульфида (29%), алюмината (25%), оксида и силиката (6%). Глинозем, содержащийся в кеках, увеличивает потери в виде алюминатов  ZnO∙Al2O3  и PbO∙Al2O3. Медь, золото и серебро при вельцевании остаются в клинкере. Кадмий, мышьяк, сурьма возгоняются в газовый поток.

    Для осуществления процесса используют вельц-печь — трубчатую вращающуюся вокруг своей оси печь, имеющую небольшой угол наклона к горизонту для создания направленного перемещения шихты от верхнего загрузочного торца к нижнему торцу, через который выгружают твердый остаток перерабатываемой шихты. Этот остаток называют клинкером.

    Перерабатываемый материал в случае необходимости дробят до зерен величиной 5—10 мм. Уголь или кокс вводят в шихту в количестве 35—45% от массы перерабатываемого материала и частицы его крупнее, чем размер зерен сырья. Чем более легкоплавка шихта, тем больше вводят в нее угля и коксика, служащих для поглощения расплавленной части шихты. Дополнительное топливо (на подтопку печи) вводят в количестве 5—10% от массы шихты. Такая дополнительная подтопка при большом расходе топлива в шихте обычно не требуется. Компоненты шихты, дозированные в необходимом соотношении, непрерывно загружаются в печь и перемещаются от верхней головки к нижней. Она располагается на поднимающейся при вращении печи стенке и постепенно с нее ссыпается. При этом шихта хорошо перемешивается и достигается тесный контакт окислов с углем-восстановителем. Применение в качестве восстановителя смеси угля и коксика весьма полезно, так как уголь из-за выделения летучих реакционно способен уже при низких температурах, а кокс приобретает максимальную активность при высокой температуре, когда часть угля уже сгорает.

    С нижнего торца печи вдувают воздух, который подогревают факельной горелкой в период пуска печи для быстрого подъема температуры в печи или для восполнения теплопритока от горения коксика. При правильно подобранном режиме процесса подтопка горелкой не нужна, но горелка облегчает управление процессом и ей обычно пользуются. Клинкер высыпается из печи в яму с водой, где происходит его охлаждение и грануляция. Газовый поток в печи направлен от нижнего торца к верхнему и создается напорным вентилятором на нижнем конце и отсасывающим вентилятором на верхнем конце (отсасывающий вентилятор подключают за пылеуловителями). Пылегазовый поток по выходе из печи попадает в пылевую камеру, где оседает грубая пыль (механический унос шихты), через кулера (батарея труб, через стенки которых газ охлаждается наружным воздухом), а затем через рукавные фильтры, где улавливаются возгоны (вельц-оксид). Грубую пыль из пылевой камеры возвращают в оборот (в шихту вельцевания), а вельц-оксид обычно направляют на выщелачивание. Степень заполнения объема печи шихтой обычно составляет 15—20 .%, продолжительность прохождения шихты. Через печь при L = 40 м составляет 2—3 ч, а при L = 90 м 4—5 ч. Максимальная температура реакционной массы 1100—1350°С, отходящих газов в пылевой камере 500-650°С, а в рукавных фильтрах — не выше 110°С (шерстяная фильтроткань) и не выше 250°С (стеклоткань).Приблизительный тепловой баланс вельц-печи длиной 41м складывается из следующих статей. Приход тепла, %: горение коксика 75, горение мазута (газа) в горелке 4, экзотермические реакции 21. Расход тепла, %: отходящие газы 40-45, клинкер 10—15, эндотермические реакции и нагрев шихты 12—15, сушка шихты 10—12, потери-через стенки печи 10—15.

    Для нормальной работы вельц-печи необходимо в шихте создавать восстановительную газовую среду, а в газовом потоке над шихтой — окислительную. Кислород в дутье расходуется на газификацию восстановителя, на сжигание коксика как топлива и на окисление возгонов. При полном использовании газообразного кислорода, попадающего в шихту, в газовом потоке не должно быть СО, а содержание СО2 и О2 в потоке связано с объемной и линейной скоростями подаваемого в печь воздуха, а также с температурой газового потока и шихты в печи.

        

                                                                    Рис. 3. Изменение параметров состояния в вельц-печи по

        её длинне L  от загрузочного торца. 

stud24.ru

Способ переработки цинковых кеков

Изобретение относится к цветной металлургии и может быть использовано при переработке серебросодержащих цинковых кеков, образующихся при извлечении цинка из сульфидных концентратов. Цинковые кеки при температуре 80-90°C подвергают сернокислотному выщелачиванию в присутствии восстановителя, обеспечивающего восстановительный потенциал выщелачивающего раствора более +0,8 В. Раствор направляют на извлечение цинка, нерастворенный остаток подвергают флотации ксантогенатом при pH=8-9. Пенный продукт подвергают перечистной флотации при pH=3,5-5, при этом в качестве собирателя используют диалкилдитиофосфат натрия с расходом 50-500 г/т. Флотоконцентрат направляют на извлечение благородных металлов, хвосты основной флотации на извлечение свинца, а хвосты перечистной флотации на извлечение цинка в основном производстве. Техническим результатом является повышение извлечения серебра в концентрат при последующей флотации на 15-20% по сравнению с известными методами. Для получения богатого по драгметаллам продукта требуется меньшее количество технологических стадий. 1 з.п. ф-лы, 3 табл., 3 пр.

 

Изобретение относится к цветной металлургии и может быть использовано при переработке серебросодержащих кеков, образующихся при извлечении цинка из сульфидных концентратов.

При переработке цинковых сульфидных концентратов по традиционной технологии, включающей окислительный обжиг и сернокислотное выщелачивание, получают кеки, основными компонентами которых являются цинк, свинец, медь, железо в виде соединений и благородные металлы. Основной причиной неполного выщелачивания цинка при выщелачивании является образование труднорастворимого феррита цинка ZnFe2O4.

Наибольшее распространение на практике получил способ переработки цинковых кеков вельцеванием с переводом благородных металлов и меди в клинкер. Клинкер перерабатывают на медеплавильных заводах совместно с медными концентратами /1. А.П. Снурников "Гидрометаллургия цинка", М.: Металлургия, 1981 г., с. 331. 2. Н.В. Гудима, Я.П. Шеин "Краткий справочник по металлургии цветных металлов" М.: Металлургия. 1975 г., с. 117-136/. Процесс вельцевания, несмотря на значительные его усовершенствования в последние годы, имеет ряд недостатков. Основные из них заключаются в большом расходе углеродистого восстановителя, низком содержании меди и благородных металлов в клинкере, что затрудняет их переработку.

Для извлечения благородных металлов из цинковых кеков используют флотацию. Известен способ извлечения серебра из цинковых кеков флотацией, включающий предварительное кондиционирование пульпы тетрахлорэтиленом, способствующим удалению элементной серы с поверхности минералов и повышению в итоге содержания серебра в концентрате /3. Патент РФ 2496892/.

Известны гидрометаллургические методы переработки цинковых кеков, основанные на реакциях разложения труднорастворимых ферритов серной кислотой при атмосферном или повышенном давлении. Из растворов, полученных при таком выщелачивании, различными методами осаждают железо и другие примеси, после чего извлекают цинк в общей технологической схеме /1/.

Известны комбинированные методы переработки цинковых кеков, включающие флотацию кеков, обжиг флотоконцентрата, выщелачивание продуктов обжига и извлечение благородных металлов из промпродуктов с использованием различных приемов и реагентов /4-7. Патенты РФ №№2192488, 2172352, 2170773, 2153013/. Общим недостатком указанных способов является многостадийность и высокие удельные затраты на извлечение благородных металлов из относительно бедных промпродуктов.

Известен способ переработки цинковых кеков /8. Патент РФ №2175354/, выбранный прототипом и включающий стадии флотации кеков, обжига флотоконцентрата, высокотемпературного сернокислотного выщелачивания продуктов обжига и разварку твердого остатка в концентрированной серной кислоте при соотношении остатка и кислоты 1:0,7-1:1,5 и температуре 150-170°C с последующим выщелачиванием продукта разварки в водном растворе с концентрацией хлора 0,3-1 г/л. При использовании указанного способа уменьшается выход серебросодержащего продукта и соответственно увеличивается содержание серебра в нем, обеспечивается снижение затрат. Основными недостатками прототипа являются низкое извлечение серебра в конечный продукт и многостадийность технологии в целом.

Настоящее изобретение направлено на устранение указанных недостатков, в частности, на увеличение извлечения серебра в конечный продукт и сокращение числа стадий переработки цинковых кеков. Технический результат заключается в использовании оригинальных реагентов и условий сернокислотного выщелачивания кеков и флотационного извлечения серебра.

Указанная цель достигается при использовании способа, включающего стадии флотации и высокотемпературного сернокислотного выщелачивания, отличающегося тем, что на первой стадии при температуре 80-90°C проводят сернокислотное выщелачивание в присутствии восстановителя, обеспечивающего восстановительный потенциал выщелачивающего раствора более +0,8 В, раствор направляют на извлечение цинка, а нерастворенный остаток подвергают флотации при pH=3,5-5, при этом в качестве собирателя используют диалкилдитиофосфат натрия с расходом 50-500 г/т, флотоконцентрат направляют на извлечение благородных металлов, а хвосты флотации на извлечение свинца. В частности, в качестве восстановителя при сернокислотном выщелачивании используют железный скрап, отходы оцинкованного железа, сульфидный цинковый концентрат, формиат натрия, сахар по отдельности и (или) в различных сочетаниях.

В основе предлагаемого способа сочетание флотации и сернокислотного выщелачивания, но в отличие от прототипа сначала выщелачивают ферриты из исходного сырья, а затем флотацией выделяют благородные металлы из хвостов выщелачивания. Первая стадия - выщелачивание труднорастворимых соединений цинковых кеков - ферритов цинка и меди - проводится принципиально новым способом. В указанных соединениях железо находится в высшей степени окисления (III). В известных методах переработки кеков дополнительное растворение ферритов достигается применением высоких температур и концентраций кислоты, в т.ч. выщелачиванием в автоклавах. Недостатки этих методов отмечены выше. Исследованиями установлено, что железо может быть восстановлено непосредственно из твердой фазы феррита до степени окисления (II), при этом образуются хорошо растворимые в сернокислых растворах сульфаты цинка, железа и меди. Для реализации указанного превращения реагент-восстановитель по своим термодинамическим свойствам и его концентрация должны обеспечивать окислительно-восстановительный потенциал (ОВП) системы не менее +0,8 В. Из числа удовлетворяющих этому условию восстановителей следует выбирать доступные и дешевые реагенты, по возможности растворимые в водных растворах. Опыты показывают, что с приемлемой скоростью восстановительное выщелачивание ферритов цинка и меди протекает при использовании некоторых спиртов, гидразинов, сахара, формиатов и других органических восстановителей:

24ZnFe2O4+С12Н22O11+72h3SO4=24ZnSO4+48FeSO4+83h3O+12CO2

2ZnFe2O4+2HCOONa+7h3SO4=2ZnSO4+4FeSO4+Na2SO4+2CO2+8h3O

Для практической переработки цинковых кеков представляет интерес использовать в качестве восстановителя металлическое железо и цинк:

ZnFe2O4+Fe+4h3SO4=ZnSO4+3FeSO4+4Н2O,

ZnFe2O4+Zn+4h3SO4=2ZnSO4+2FeSO4+4Н2O,

в т.ч. отходы оцинкованного железа.

Установлено, что в рассматриваемой системе восстановителем может быть сульфидная сера, входящая в нерастворенные сульфиды кека. Положительный эффект достигается при добавке к кеку перед выщелачиванием исходного концентрата:

4ZnFe2O4+ZnS+12h3SO4=5ZnSO4+8FeSO4+12Н2O.

Гетерофазный характер такого взаимодействия, осложняемый образованием поверхностных промежуточных продуктов, ограничивает кинетику и степень целевого превращения. Скорость данного варианта, привлекательного с технологической точки зрения, может быть увеличена интенсивным перемешиванием Восстановительное выщелачивание ферритов может быть реализовано при использовании газообразных восстановителей, например диоксида серы, в автоклаве:

2ZnFe2O4+SO2+4h3SO4=2ZnSO4+4FeSO4+4Н2O.

По причине ограниченной растворимости диоксида серы в сернокислых растворах скорость данного процесса также не велика. Указанные восстановители могут быть использованы как селективно, так и в различных сочетаниях.

При восстановительном выщелачивании цинк, железо и медь, входящие в состав ферритов, переходят в раствор. В нерастворенном остатке (вторичном кеке) остаются неокисленные при обжиге сульфиды, оксид и сульфат свинца, кварц и другие нерастворимые минеральные формы, изначально присутствующие в сырье. Структура твердой фазы кеков при восстановительном выщелачивании претерпевает изменения, важнейшим следствием которых является близкое к полному вскрытие благородных металлов. Опыты показывают, что флотацией в оптимальных режимах степень извлечения серебра в концентрат достигает 90-95%.

Поскольку содержание сульфидов во вторичных кеках восстановительного выщелачивания может достигать 25-50%, а суммарное содержание благородных металлов не превышает 0,1-0,2%, селективное (без сульфидов) флотационное выделение последних в пенный продукт не представляется возможным. В этой связи флотацию проводят в две стадии. Сначала из вторичного кека выделяют коллективный концентрат, в котором преобладает сульфид цинка. Содержание благородных металлов в коллективном концентрате составляет 0,05-0,08%. Первую стадию флотации проводят в известных режимах с использованием в качестве собирателя ксантогената при pH=8-9. На второй стадии коллективный концентрат перечищают с использованием в качестве собирателя диалкилдитиофосфата натрия с расходом 50-500 г/т. Установлено, что для обеспечения селективности флотации и повышения качества концентрата благородных металлов перечистную флотацию следует проводить в слабокислой среде при pH=3,5-5. Сульфиды цинка при этом остаются в хвостах, данный продукт возвращают на обжиг. Растворы восстановительного выщелачивания направляют на извлечение цинка в гидрометаллургическую часть общей технологической схемы. Хвосты коллективной флотации направляют на извлечение свинца. Концентрат благородных металлов с содержанием серебра до 1% служит сырьем аффинажного производства.

В отличие от прототипа для получения богатого по драгметаллам продукта требуется всего три технологических приема: восстановительное выщелачивание, коллективная флотация и перечистная флотация.

Примером реализации предлагаемого способа служат результаты следующих опытов.

Цинковый кек (Челябинский цинковый завод) содержал 18,3% Ζn, 1,4% Сu, 24,8% Fe, 4,9% Pb, 320 г/т Ag. Навески кека массой 100 г перемешивали в растворах серной кислоты с концентрацией 100 г/л при Ж:Т=5:1 в течение 2 часов при температуре 90°C. В качестве восстановителя использовали формиат натрия, сахар, металлическое железо и оцинкованное железо в виде мелких обрезков проволоки, добавляемые в пульпу в избытке. По окончании опытов фильтрованием отделяли нерастворенный остаток. Взвешиванием оценивали выход вторичного кека, анализом продуктов определяли степень извлечения цинка в раствор и содержание серебра в кеке. Целевое опробование показало, что в условиях восстановительного выщелачивания переход серебра в раствор исключен. Результаты опытов с разными восстановителями представлены в таблице 1.

Таблица 1
Восстановитель Масса восстановителя, г Выход нерастворенного остатка, % Степень выщелачивания цинка, % Содержание серебра в остатке, г/т
1 Формиат 20 47 89 615
2 Сахар 10 43 97 675
3 Железо 20 55 84 590
4 Оцинкованное железо 20 49 93 643
5 Цинковый к-т 20 Не опред. 62 580
6 Цинковый к-т 10 Не опред. 88 594
+железо 10

Во второй серии опытов при помощи платинового электрода контролировали окислительно-восстановительный потенциал пульпы и варьировали температурой. В качестве восстановителя использовали сахар. Результаты представлены в таблице 2

Таблица 2
Расход сахара, г ОВП, В Температура, С Степень выщелачивания цинка, % Содержание серебра в остатке, г/т
1 0,5 0,37 75 32 396
2 1 0,77 75 58 430
3 5 0,82 80 82 549
4 10 0,85 85 93 684
5 20 0,89 90 96 698
6 20 0,89 95 97 705

В третьей серии опытов провели выщелачивание кеков сахаром в оптимальных режимах (таблицы 1, 2) и нерастворенные остатки флотировали в две стадии. На стадии перечистки варьировали расходом собирателя диалкилдитиофосфат натрия (БТФ 1522) и pH пульпы. Результаты представлены в таблице 3.

Таблица 3
Расход БТФ 1522, г/т pH пульпы Содержание серебра в концентрате, г/т Извлечение серебра в к-т из исходного кека, %
1 30 8 3615 64
2 50 6 4930 79
3 100 4 6650 87
4 300 4 7680 92
5 500 3,5 8773 94
6 700 3,0 8740 90

Для сравнения проведен опыт, в котором кек указанного состава перерабатывали по способу прототипа: флотация и высокотемпературное выщелачивание в режимах, приведенных в описании изобретения. Анализ полученных продуктов показал, что извлечение серебра во флотоконцентрат не превысило 73%. Причиной недостаточного извлечения является ассоциированность драгметаллов в структуру ферритов, которые не флотируются. Последующие обжиг и высокотемпературное выщелачивание флотоконцентрата и многостадийная его переработка согласно формуле прототипа позволили получить богатый продукт, но сквозное извлечение серебра в него остается неизменно низким. С этой точки зрения предлагаемое в настоящем изобретении предварительное вскрытие драгметаллов восстановительным выщелачиванием обеспечивает более высокую эффективность последующей флотации.

Сопоставительный анализ известных технических решений, в т.ч. способа, выбранного в качестве прототипа, и предлагаемого изобретения позволяет сделать вывод, что именно совокупность заявленных признаков обеспечивает достижение усматриваемого технического результата. Реализация предложенного технического решения за счет восстановительного характера выщелачивания позволяет увеличить извлечение серебра в концентрат при последующей флотации на 15-20% по сравнению со способом прототипа. Для получения богатого по драгметаллам продукта требуется меньшее количество технологических стадий.

1. Способ переработки цинковых кеков, включающий стадии флотации и высокотемпературного сернокислотного выщелачивания, отличающийся тем, что на первой стадии проводят сернокислотное выщелачивание цинковых кеков при температуре 80-90°C в присутствии восстановителя, обеспечивающего восстановительный потенциал выщелачивающего раствора более +0,8 В, раствор направляют на извлечение цинка, нерастворенный остаток подвергают основной флотации ксантогенатом при pH=8-9, пенный продукт подвергают перечистной флотации при pH=3,5-5 с использованием в качестве собирателя диалкилдитиофосфата натрия с расходом 50-500 г/т, флотоконцентрат направляют на извлечение благородных металлов, хвосты основной флотации - на извлечение свинца, а хвосты перечистной флотации - на извлечение цинка в основном производстве цинка.

2. Способ по п. 1, отличающийся тем, что в качестве восстановителя при сернокислотном выщелачивании используют железный скрап, отходы оцинкованного железа, сульфидный цинковый концентрат, формиат натрия, сахар по отдельности и/или в различных сочетаниях.

www.findpatent.ru

Способ пирометаллургической переработки цинковых кеков

Изобретение относится к металлургии цветных металлов, в частности предназначено для переработки цинковых кеков вельцеванием. Способ осуществляется путем фильтрации пульпы цинкового кека на пресс-фильтрах, смешения отфильтрованного кека с влажностью 19-23% с коксовой мелочью, флюсующими добавками, оборотными пылями или другими пылевидными цинксодержащими продуктами, пригодными для переработки вельцеванием в устройстве, обеспечивающем турбулентное движение материалов, и последующего вельцевания полученной шихты. Использование способа позволит увеличить производительность вельц-печи за счет сокращения выхода оборотной пыли и улучшить качество вельц-окиси за счет обогащения ее по цинку и свинцу и снижения содержания невозгоняемых компонентов. 1 з.п. ф-лы, 1 табл.

 

Изобретение относится к металлургии цветных металлов и может быть использовано для переработки цинксодержащих материалов, например промпродуктов цинкового электролитного производства - цинксодержащих кеков вельцеванием.

Известен способ переработки цинковых кеков вельцеванием, включающий фильтрацию пульпы цинкового кека на дисковых вакуумных фильтрах, с последующей подсушкой и грануляцией в сушильных барабанах, отапливаемых мазутом или газом (А.П.Снурников. Гидрометаллургия цинка. - М.: Металлургия. - 1981. - с.326-327.). Недостатками способа является высокая конечная влажность отфильтрованного кека, что требует применения тепловой сушки материала для его грануляции с существенным расходом топлива, неизбежным пылеобразованием и выносом части пыли с отходящими газами в атмосферу.

Также известен способ пирометаллургической переработки цинковых кеков, включающий смешение, скатывание и сушку цинковых кеков с твердым углеродистым восстановителем и вельцевание скатанного материала (а.с. СССР №876761 по кл. С 22 В 19/38, опубл. В Б.И, пр. от 12.02.1980 г.).

Недостатком этого способа является необходимость энергоемкой тепловой сушки материалов в процессе смешения и грануляции шихты. В результате вакуумной фильтрации пульпы получается цинковый кек влажностью 28-35%, получение гранул которого без сушки, только путем смешения с другими компонентами шихты вельцевания, при этом выдерживая их необходимые соотношения, не представляется возможным (материал остается в виде вязкой массы).

Наиболее близкий по технической сути и достигаемому результату является способ переработки цинковых кеков вельцеванием, включающий фильтрацию кека на пресс-фильтре (влажность полученного продукта - не выше 23%) и загрузку кеков на вельцевание без стадии сушки в сушильных барабанах, при одновременной подаче в печь коксовой мелочи, флюсов и оборотных пылей (см. В.В.Гейхман, Л.А.Казанбаев, П.А.Козлов и др. Исследования фильтрации цинкового кека под давлением. - Цв. металлы, 2000, №5. - с.30-32).

Недостатком указанного способа является отсутствие подготовки отфильтрованных цинковых кеков к переработке вельцеванием: смешения отфильтрованных цинковых кеков с другими компонентами шихты, формирования достаточно прочных гранул. Цинковый кек, отфильтрованный под давлением, несмотря на остаточную влажность 19-23%, механически непрочный и легко рассыпается при транспортировке. Подача такого материала в вельц-печь сопровождается интенсивным пылеобразованием в зоне подсушки и выносом тонких фракций шихты в пылевые камеры и далее - в вельц-окись.

Техническим результатом данного изобретения является сокращение пылевыноса в процессе загрузки шихты и ее досушивания в вельц-печи, попадания невозгоняемых компонентов шихты (железо, медь, кобальт, никель, кремнезем и другие) в товарный продукт - вельц-окись (например, содержание железа в окиси снижается с 3-4 до 0,5-1% по сравнению со способом по прототипу), сокращение настылеобразования.

Указанный результат достигается тем, что в способе пирометаллургической переработки цинковых кеков, включающем обезвоживание кека на пресс-фильтрах и вельцевания с дозировкой коксовой мелочи, флюсов, оборотных пылей, дозировку к цинковым кекам компонентов шихты выполняют в смесителе в турбулентном режиме движения с соударением частиц при скорости вращения лопастей перемешивающего устройства от 6 до 10 об/с. Другим отличием является то, что к цинковым кекам дополнительно добавляют пылевидные цинксодержащие материалы, по химическому составу рекомендованные для переработки вельцеванием.

В отличие от известных технологий смешения и грануляции предлагаемый способ позволяет вести процесс без тепловой сушки, что позволяет сократить около 40-50 нм3 природного газа и предотвратить выброс в атмосферу до 0,5 кг пыли на 1 т шихты.

Способ осуществляется следующим образом.

Цинковый кек, находящийся после гидрометаллургической обработки (растворение цинка в серной кислоте, предварительная отмывка от сульфатов) в виде густой пульпы, подвергается фильтрации под давлением в условиях пресс-фильтра (например, на горизонтальном пресс-фильтре финской фирмы "Larox"), где реализована непосредственно фильтрация, механическое (диафрагменное) обезвоживание при повышенном давлении (до 16 бар), подсушка путем пропускания сжатого воздуха через слой кека. Получается отфильтрованный кек влажностью 19-23% в виде плоских пластин, достаточно легко разрушающихся при падении и другом механическом воздействии.

Цинковый кек после фильтрации, коксовая мелочь (размеры кусков менее 10 мм), флюсующие добавки (в основном известняк с размерами кусков менее 10 мм), оборотные пыли, а при их недостаточном количестве - другие пылевидные (размер частиц в 80% материала не должен превышать 1 мм) цинксодержащие материалы, пригодные для переработки вельцеванием по химическому составу, с помощью дозаторов загружаются в перемешивающее устройство. Соотношение перечисленных компонентов шихты вельцевания устанавливается по их химическому составу с тем, чтобы обеспечить эффективное извлечение цинка и свинца при высокой производительности вельц-печи. Расход коксовой мелочи устанавливается, исходя из требования эффективности процесса и минимизации потерь с клинкером (в виде углеродсодержащей части).

Смешение и грануляция компонентов шихты осуществляется в смесителе, обеспечивающем турбулентный режим движения с соударениями частиц, например, в роторном либо турболопастном. Необходимый эффект пластификации влажного цинкового кека с тщательным перемешиванием его с другими компонентами шихты и формирование гранул устойчиво достигается при скорости вращения лопастей в пределах от 6 до 10 об/с.

В оптимальных режимах работы смесителя по скорости вращения лопастей и по производительности получается гранулированная шихта вельцевания с преобладанием (выше 80-85%) гранул размером от 3 до 10 мм. Влажность конечного продукта составляет от 12-13 до 17-18%.

Приготовленная по предлагаемому способу шихта загружается в вельц-печь на пирометаллургическую переработку (отгонку цинка, свинца, кадмия, индия и других ценных компонентов с переводом их в обогащенный продукт - вельц-окись).

Предложенный способ испытан в промышленных условиях.

Испытания показали, что кек, полученный при фильтрации пульпы в условиях пресс-фильтра (типа "Larox"), имеет влажность 21-22%. Он при загрузке в турболопастной смеситель хорошо пластифицируется и смешивается с коксовой мелочью, флюсами, оборотными пылями, пылевидными цинксодержащими материалами. При этом получаются гранулы преимущественным размером от 3 до 10 мм и влажностью 16-17%. Часть гранул представляет собой крупные частицы кокса, "обмазанные" кеком с включенными в него пылевыми частицами, остальные - однородную смесь пылевых частиц и кека.

В процессе испытаний оптимизированы режимы смешения: показано, что эффективно и с образованием гранул процесс идет при скорости перемешивающего устройства (лопастей) в пределах 6-10 об/с.

При меньших скоростях перемешивания сил соударения частиц недостаточно для эффективного разрушения и пластификации - смесь остается сыпучей, коксовая мелочь (особенно крупные частички размером более 5 мм) не "обмазывается" кеком, и при вельцевании эффективность использования кокса снижается, что проявляется повышением содержания углерода в клинкере. При скоростях вращения более 10 об/с пластификация кека происходит очень быстро, образующаяся вязкая масса не гранулируется и, не успевая выгружаться, "заматывает" рабочие органы смесителя.

Загрузка гранулированной шихты в вельц-печь в течение 14 суток показала положительные результаты применения предложенного способа - выход оборотного материала в печи снизился с 6-7 до 2-3% - получаемого оборота не хватало для необходимого снижения влажности шихты при смешении, поэтому дополнительно добавляли пылевидные цинксодержащие материалы, по химическому составу рекомендованные для переработки вельцеванием.

Содержание железа в вельц-окиси с наблюдаемой печи (основной показатель, по которому оценивается механический пылевынос) с началом загрузки гранулированной шихты снизилось с 3-4 до величины менее 1% (до испытаний в печь раздельно грузили кек после пресс-фильтра и коксовую мелочь, смешанную с флюсом и пылевидными материалами путем грейферной шихтовки, оборотную пыль грузили отдельно). Замеры температуры кожуха печи за период испытаний не показали роста настыли.

За счет близкого контакта частиц кокса и цинксодержащего материала в гранулах эффективность действия углеродистого восстановителя увеличилась. Загружая шихту, приготовленную по предлагаемому способу, удалось устойчиво вести процесс вельцевания при расходе коксовой мелочи 350-400 кг на 1 т цинксодержащего материала (до этого обычная норма расхода была 430-450 кг/т).

Проверку способа осуществляли следующим образом.

В трубчатую вращающуюся печь размером 41×2,5 м загружалась шихта, состоящая из цинкового кека, коксовой мелочи, оборотных материалов, известняка, пылевидных цинксодержащих материалов через течку, установленную на верхней головке печи. Шихта за счет вращения и наклона печи продвигалась по длине печи, проходя последовательно зоны сушки, восстановления металлов и формирования клинкера. В противоток движению шихты проходил пылегазовый поток. Пыль улавливалась рукавными фильтрами, а очищенный газ выбрасывался через трубу в атмосферу. С разгрузочного конца печи, где происходила выгрузка клинкера, дополнительно подавался в печь воздух для обеспечения необходимого количества в реакционном пространстве печи кислорода для горения твердого углеродистого восстановителя (коксика) и окисления паров металлов и сернисто-органических соединений.

Шихта в печь поступала разными способами: путем грейферной шихтовки коксика, флюсов и пылевидных материалов с подачей смеси через отдельный бункер, цинкового кека, отфильтрованного на пресс-фильтре LAROX - через другой бункер, оборотного материала - через отдельную течку с элеватора. По предложенному способу шихта была тщательно перемешана и гранулирована в турболопастном смесителе. Соотношение компонентов шихты в испытаниях выдерживалось следующим: на 1 т цинкового кека приходилось 400 кг коксовой мелочи, 50 кг известняка, 70 кг - оборотной пыли или оборотной пыли вместе с пылевидными материалами.

Ниже в таблице приведены сравнительные данные по вельцеванию шихты, приготовленной разными способами.

Таблица
Испытуемый способВлажность кека/шихты, %Влажность коксика, %Производительность печи (по шихте), т/часВыход оборотного материала, % к весу шихтыВыход вельц-окиси от кека, %Железо в вельц-окиси, %
Предлагаемый17-6,862-329-310,5-1,0
Без смешения и грануляции (кек после пресс-фильтра, остальные компоненты перемешаны грейфером)22126,66-733-353-4

Из приведенных выше данных следует, что при смешении и грануляции кека действительно увеличивается производительность вельц-печи, снижается выход оборотного материала, улучшается качество вельц-окиси (на примере снижения содержания невозгоняемого компонента - железа).

1. Способ пирометаллургической переработки цинковых кеков, включающий стадии их обезвоживания на пресс-фильтрах и вельцевания с дозировкой коксовой мелочи, флюсов, оборотных пылей, отличающийся тем, что дозировку к цинковым кекам компонентов шихты выполняют в смесителе в турбулентном режиме движения с соударениями частиц при скорости вращения лопастей перемешивающего устройства от 6 до 10 об./с.

2. Способ по п.1, отличающийся тем, что к цинковым кекам дополнительно добавляют пылевидные цинксодержащие материалы, по химическому составу рекомендованные для переработки вельцеванием.

www.findpatent.ru

Способ переработки цинкового кека

Изобретение может быть использовано в цветной и черной металлургии, а также для очистки промышленных и бытовых стоков. Способ переработки цинкового кека включает сульфатизацию олеумом с последующим выщелачиванием сульфатного спека раствором серной кислоты с образованием пульпы. Далее пульпу подвергают гидрохлорированию с последующей экстракцией из образовавшегося раствора ионов металлов порционной подачей трибутилфосфата и их реэкстракцтей. Задачей изобретения является разработка эффективного способа переработки цинковых кеков. Техническим результатом является селективное извлечение цинка, железа, меди, свинца, золота и серабра из цинкового кека. 3 ил., 2 табл., 1 пр.

 

Изобретение относится к извлечению веществ органическими экстрагентами из водных растворов и может быть использовано в цветной и черной металлургии, а также для очистки промышленных и бытовых стоков.

Известна технология переработки цинковых кеков вельцеванием [П.А. Козлов / Вельц-процесс. - М: ФГУП Издательский дом «Руда и металлы», 2002. - 176 с.; Г.Н. Шиврин / Металлургия свинца и цинка - М.: «Металлургия», 1982. - 352 с.].

Недостатком технологии является то что, кроме материало-, энерго- и капиталоемкости она представляет значительную экологическую опасность. В выбросах недостаточно очищенных газов содержание SO2 в отходящих газах составляет порядка 0,1%, что не позволяет направлять их на получение товарной серной кислоты. Однако в пересчете на средний годовой объем отходящих газов валовый выброс SO2 составляет значительную величину. Запыленность очищенных газов процесса вельцевания достаточно высока. Отход процесса вельцевания - клинкер, выход которого составляет порядка 65-70% от массы перерабатываемого кека, не перерабатывается, а вывозится на отвальное хозяйство завода. Значительна также глубина загрязнения и порчи почв. Складирование зачастую осуществляется на открытой площадке. Основными компонентами клинкера являются железо, цветные металлы (цинк, медь, свинец), заметные количества благородных металлов, а также пустая порода, в том числе свободный углерод (коксик), кремнезем, оксид кальция, оксид магния, глинозем. Клинкер отличается своей химической инертностью из-за фазового состава, представленного трудновскрываемыми, упорными для переработки сульфидами, фаялитом, метасиликатом и ферратами.

Наиболее близким техническим решением является схема переработки цинковых кеков [В.М. Алкацева / Принципиальная схема переработки цинковых кеков. - Изв. ВУЗов. Цветная металлургия, №3, 2014. С. 28-32], в которой на основании исследований по переработке цинковых кеков сульфатизацией олеумом с последующим выщелачиванием сульфатного спека раствором серной кислоты, а также анализа литературных источников по выщелачиванию сульфата свинца из промпродуктов предложена технологическая схема переработки цинковых кеков.

Недостатком схемы является то, что она не учитывает, что при выщелачивании золото и серебро распределяются между раствором и остатком примерно поровну. Осталось неизвестным, как будут селективно извлекать оставшиеся в кеке золото и серебро, а из раствора медь и цинк, как сказано в статье, «известными способами».

Задачей изобретения является разработка эффективного способа переработки цинковых кеков.

Технический результат, который может быть получен при использовании изобретения, заключается в эффективности селективного извлечения железа, цинка, меди, свинца, золота и серебра из цинковых кеков.

Данный технический результат достигается тем, что в известном способе переработки цинкового кека, включающем переработку цинковых кеков сульфатизацией олеумом с последующим выщелачиванием сульфатного спека раствором серной кислоты, пульпа после выщелачивания сульфатного спека подвергается гидрохлогированию, из раствора после гидрохлорирования экстрагируют ионы металлов порционной подачей трибутилфосфата при различных температурах, концентрациях соляной кислоты, времени экстракции, содержании 240 г/дм3 NaCl и включающем стадии:

1. Гидрохлорирование пульпы (3 н HCl, 240 г/дм3 NaCl, Ж:Т=2:1, продолжительность 6-8 ч, температура 70°С),

2. Экстракция Fe и Au трибутилфосфатом из раствора после гидрохлорирования (2-3 н HCl, 240 г/дм3 NaCl, 60°С),

3. Экстракция Zn и Ag (3 н HCl, 240 г/дм3 NaCl, 20°С),

4. Реэкстракция железа и цинка дистиллированной водой из экстракта,

5. Реэкстракция золота и серебра смесью 8% раствора тиомочевины (ТМ) и 10% раствора HCl.

Технологией предусмотрено первоначальное извлечение железа в первых порциях экстрагента, потому что присутствие железа в растворе подавляет экстракцию цинка и серебра.

Процессы экстракции и реэкстракции осуществляют порционной подачей экстракта и реэкстракта, что снижает расход экстрагента и реэкстракта, повышает селективность извлечения.

Сущность способа поясняется данными фиг. 1-3, в которых показана принципиальная технологическая схема процесса, и табл.1-2, в которых дан состав окисленного цинкового кека и материальный баланс процесса в расчете на 1 кг цинкового кека.

Пример конкретного выполнения способа

При переработке цинковых концентратов после окислительного обжига и сернокислотного выщелачивания образуется кек, состав которого приведен в табл. 1.

Рентгенофазовый анализ исследуемого окисленного цинкового кека показал, что основной преобладающей фазой кека является феррит цинка ZnOFe2O3, обнаружено присутствие α-ZnS и β-ZnS, α-кварца, сульфатов свинца, кальция и магния. Массовые доли (%) соединений металлов в исследуемом кеке составляют: цинк: 59 ZnO⋅Fe2O3; 24 ZnSO4; 14 ZnS; 32 ZnO⋅SiO2; свинец: 85 PbSO4; 15 PbS; медь: 65 CuO⋅Fe2O3; 15 CuS; 20 CuSO4; марганец: 60 MnO2; 40 MnSO4; кадмий: 100 CdO⋅Fe2O3; кобальт: 100 CoSO4; железо: 89 ферриты цинка, меди, кадмия; 11 Fe2O3; магний: 80 MgSO4, 20 MgO⋅Al2O.

На фиг. 1 приведена принципиальная технологическая схема селективного извлечения железа, цинка, меди, свинца, золота и серебра из цинковых кеков.

Технологическая схема включает следующие стадии:

1. Сульфатизация кека олеумом (Ж:Т=1:1, продолжительность 4 ч, температура 250°С) с образованием сульфатного спека.

Выделяющиеся газы оксидов серы направляются в сернокислотное производство.

2. Выщелачивание сульфатного спека (0,05 н h3SO4, Ж:Т=0,5:1, продолжительность 2 ч, температура 20°С) с образованием пульпы.

3. Гидрохлорирование пульпы (3 н HCl, 240 г/дм3 NaCl, Ж:Т=2:1, продолжительность 6-8 ч, температура 70°С) с образованием раствора, содержащего Fe, Zn, Cu, Pb, Au, Ag, и остатка, содержащего соединения алюминия, кальция, кремния и т.п.

Остаток можно использовать на технические цели, например, в качестве флюса или наполнителя выработанного пространства шахт и т.п.

4. Экстракция Fe и Au трибутилфосфатом из раствора после гидрохлорирования (2-3 н HCl, 240 г/дм3 NaCl, 60°С) с образованием экстракта, содержащего Fe и Au, и рафината, содержащего Zn, Cu, Pb и Ag.

Экстракцию следует проводить быстро, иначе в экстракт вместе с железом и золотом может экстрагироваться цинк и тем больше, чем больше время экстракции.

5. Реэкстракция железа дистиллированной водой с образованием экстракта, содержащего золото, и реэкстракта, содержащего небольшое количество цинка, из которого в результате гидролиза соли железа осаждается оксид железа.

При большом содержании в реэкстракте цинка наряду с железом можно применить пирогидролиз реэкстракта с серной кислотой с образованием осадка оксида железа и раствора сульфата цинка. Выделяющиеся хлористый водород и водяные пары можно использовать в обороте.

6. Реэкстракция золота смесью 8% раствора тиомочевины (ТМ) и 10% раствора HCl с образованием регенерированного экстрагента, который возвращается на экстракцию железа и золота (стадия 4), и раствора Au, идущего на извлечение золота.

Для извлечения или концентрирования золота можно использовать электроэкстракцию, экстракцию, сорбцию и т.д.

7. Экстракция Zn и Ag (3 н HCl, 240 г/дм3 NaCl, 20°С) из рафината, содержащего Zn, Cu, Pb, и Ag, с образованием экстракта, содержащего Zn и Ag, и рафината, содержащего Cu и Ag.

8. Реэкстракция цинка дистиллированной водой с образованием раствора цинка и экстракта, содержащего серебро.

Реэкстракцию цинка можно осуществлять раствором после реэкстракции железа и небольших количеств цинка (стадия 5).

Из раствора после реэкстракции цинка можно извлечь или сконцентрировать цинк гидролитическим осаждением, электроэкстракцией, экстракцией, сорбцией и т.п.

9. Реэкстракция серебра смесью 8% раствора тиомочевины (ТМ) и 10% раствора НCl с образованием регенерированного экстрагента, который возвращается на экстракцию цинка и серебра (стадия 7), и раствора Ag, идущего на извлечение серебра.

Для извлечения или концентрирования серебра можно использовать электроэкстракцию, экстракцию, сорбцию и т.д.

Серебро также можно извлечь из органической фазы 2% раствором ТМ но с применением 1% раствора серной кислоты, при этих условиях золото не реэкстрагируется.

10. Селективное извлечение Cu и Pb, содержащихся в рафинате после экстракции цинка и серебра (стадия 7).

На фиг. 2 дана схема I селективного извлечения меди и свинца сорбцией. Свинец после элюирования осаждается в виде сульфата свинца PbSO4, медь можно сконцентрировать гидролитическим осаждением, осаждением сульфида меди, электроэкстракцией, экстракцией, сорбцией и т.п.

Рафинат, очищенный от меди и свинца, направляется на гидрохлорирование.

На фиг. 3 дана схема II селективного извлечения меди и свинца осаждением.

Избыток накопившихся в растворе соляной кислоты и поваренной соли можно удалить кипячением с серной кислотой. Выделяющуюся соляную кислоту и водяные пары можно использовать в обороте. При этом из раствора выпадает осадок сульфата свинца.

Из раствора, содержащего сульфат меди, осаждают гидроксид меди щелочью.

Раствор, содержащий высокую концентрацию сульфата натрия, можно обработать гашеной известью для образования гипса (строительный материал) и щелочи NaOH (используется для технических целей, например для осаждения гидроксида меди).

Технологией предусмотрено первоначальное извлечение железа в первых порциях экстрагента, потому что присутствие железа в растворе подавляет экстракцию цинка и серебра.

Процессы экстракции и реэкстракции осуществляют порционной подачей экстракта и реэкстракта, что снижает расход экстрагента и реэкстрагента, повышает селективность извлечения.

В табл. 2 дан материальный баланс процесса переработки цинкового кека по технологической схеме фиг. 1 в расчете на 1 кг кека. Извлечения компонентов на каждой стадии даны в % масс. от их содержания в исходном кеке.

Применение разработанной технологии позволяет селективно извлечь, % масс. от содержания компонентов в исходном кеке,:

Zn - 88, Fe - 77, Cu - 98, Pb - 86, Au - 90, Ag - 86.

По сравнению с вельцеванием разработанная технология экологически менее опасна, так как не отчуждает значительные площади земли для хранения клинкера, не загрязняет почву, уменьшает количество вредных выбросов в атмосферу.

Способ переработки цинкового кека, включающий сульфатизацию кека олеумом и последующее выщелачивание сульфатного спека раствором серной кислоты с образованием пульпы, отличающийся тем, что пульпу после выщелачивания сульфатного спека подвергают гидрохлорированию с последующей экстракцией из образовавшегося раствора ионов металлов порционной подачей трибутилфосфата и их реэкстракцией, при этом переработка включает следующие стадии:

гидрохлорирование пульпы при содержании в растворе 3 н HCl и 240 г/дм3 NaCl, при Ж:Т=2:1, продолжительности 6-8 ч и температуре 70°С,

экстракция Fe и Au трибутилфосфатом из раствора после гидрохлорирования, содержащего 2-3 н HCl и 240 г/дм3 NaCl, при температуре 60°С,

экстракция Zn и Ag из раствора, содержащего 3 н HCl и 240 г/дм3 NaCl, при температуре 20°С,

реэкстракция железа и цинка дистиллированной водой из упомянутых экстрактов, и

реэкстракция золота и серебра смесью 8%-ного раствора тиомочевины (ТМ) и 10%-ного раствора HCl.

www.findpatent.ru

способ переработки цинковых кеков - патент РФ 2578881

Изобретение относится к цветной металлургии и может быть использовано при переработке серебросодержащих цинковых кеков, образующихся при извлечении цинка из сульфидных концентратов. Цинковые кеки при температуре 80-90°C подвергают сернокислотному выщелачиванию в присутствии восстановителя, обеспечивающего восстановительный потенциал выщелачивающего раствора более +0,8 В. Раствор направляют на извлечение цинка, нерастворенный остаток подвергают флотации ксантогенатом при pH=8-9. Пенный продукт подвергают перечистной флотации при pH=3,5-5, при этом в качестве собирателя используют диалкилдитиофосфат натрия с расходом 50-500 г/т. Флотоконцентрат направляют на извлечение благородных металлов, хвосты основной флотации на извлечение свинца, а хвосты перечистной флотации на извлечение цинка в основном производстве. Техническим результатом является повышение извлечения серебра в концентрат при последующей флотации на 15-20% по сравнению с известными методами. Для получения богатого по драгметаллам продукта требуется меньшее количество технологических стадий. 1 з.п. ф-лы, 3 табл., 3 пр.

Изобретение относится к цветной металлургии и может быть использовано при переработке серебросодержащих кеков, образующихся при извлечении цинка из сульфидных концентратов.

При переработке цинковых сульфидных концентратов по традиционной технологии, включающей окислительный обжиг и сернокислотное выщелачивание, получают кеки, основными компонентами которых являются цинк, свинец, медь, железо в виде соединений и благородные металлы. Основной причиной неполного выщелачивания цинка при выщелачивании является образование труднорастворимого феррита цинка ZnFe 2O4.

Наибольшее распространение на практике получил способ переработки цинковых кеков вельцеванием с переводом благородных металлов и меди в клинкер. Клинкер перерабатывают на медеплавильных заводах совместно с медными концентратами /1. А.П. Снурников "Гидрометаллургия цинка", М.: Металлургия, 1981 г., с. 331. 2. Н.В. Гудима, Я.П. Шеин "Краткий справочник по металлургии цветных металлов" М.: Металлургия. 1975 г., с. 117-136/. Процесс вельцевания, несмотря на значительные его усовершенствования в последние годы, имеет ряд недостатков. Основные из них заключаются в большом расходе углеродистого восстановителя, низком содержании меди и благородных металлов в клинкере, что затрудняет их переработку.

Для извлечения благородных металлов из цинковых кеков используют флотацию. Известен способ извлечения серебра из цинковых кеков флотацией, включающий предварительное кондиционирование пульпы тетрахлорэтиленом, способствующим удалению элементной серы с поверхности минералов и повышению в итоге содержания серебра в концентрате /3. Патент РФ 2496892/.

Известны гидрометаллургические методы переработки цинковых кеков, основанные на реакциях разложения труднорастворимых ферритов серной кислотой при атмосферном или повышенном давлении. Из растворов, полученных при таком выщелачивании, различными методами осаждают железо и другие примеси, после чего извлекают цинк в общей технологической схеме /1/.

Известны комбинированные методы переработки цинковых кеков, включающие флотацию кеков, обжиг флотоконцентрата, выщелачивание продуктов обжига и извлечение благородных металлов из промпродуктов с использованием различных приемов и реагентов /4-7. Патенты РФ № № 2192488, 2172352, 2170773, 2153013/. Общим недостатком указанных способов является многостадийность и высокие удельные затраты на извлечение благородных металлов из относительно бедных промпродуктов.

Известен способ переработки цинковых кеков /8. Патент РФ № 2175354/, выбранный прототипом и включающий стадии флотации кеков, обжига флотоконцентрата, высокотемпературного сернокислотного выщелачивания продуктов обжига и разварку твердого остатка в концентрированной серной кислоте при соотношении остатка и кислоты 1:0,7-1:1,5 и температуре 150-170°C с последующим выщелачиванием продукта разварки в водном растворе с концентрацией хлора 0,3-1 г/л. При использовании указанного способа уменьшается выход серебросодержащего продукта и соответственно увеличивается содержание серебра в нем, обеспечивается снижение затрат. Основными недостатками прототипа являются низкое извлечение серебра в конечный продукт и многостадийность технологии в целом.

Настоящее изобретение направлено на устранение указанных недостатков, в частности, на увеличение извлечения серебра в конечный продукт и сокращение числа стадий переработки цинковых кеков. Технический результат заключается в использовании оригинальных реагентов и условий сернокислотного выщелачивания кеков и флотационного извлечения серебра.

Указанная цель достигается при использовании способа, включающего стадии флотации и высокотемпературного сернокислотного выщелачивания, отличающегося тем, что на первой стадии при температуре 80-90°C проводят сернокислотное выщелачивание в присутствии восстановителя, обеспечивающего восстановительный потенциал выщелачивающего раствора более +0,8 В, раствор направляют на извлечение цинка, а нерастворенный остаток подвергают флотации при pH=3,5-5, при этом в качестве собирателя используют диалкилдитиофосфат натрия с расходом 50-500 г/т, флотоконцентрат направляют на извлечение благородных металлов, а хвосты флотации на извлечение свинца. В частности, в качестве восстановителя при сернокислотном выщелачивании используют железный скрап, отходы оцинкованного железа, сульфидный цинковый концентрат, формиат натрия, сахар по отдельности и (или) в различных сочетаниях.

В основе предлагаемого способа сочетание флотации и сернокислотного выщелачивания, но в отличие от прототипа сначала выщелачивают ферриты из исходного сырья, а затем флотацией выделяют благородные металлы из хвостов выщелачивания. Первая стадия - выщелачивание труднорастворимых соединений цинковых кеков - ферритов цинка и меди - проводится принципиально новым способом. В указанных соединениях железо находится в высшей степени окисления (III). В известных методах переработки кеков дополнительное растворение ферритов достигается применением высоких температур и концентраций кислоты, в т.ч. выщелачиванием в автоклавах. Недостатки этих методов отмечены выше. Исследованиями установлено, что железо может быть восстановлено непосредственно из твердой фазы феррита до степени окисления (II), при этом образуются хорошо растворимые в сернокислых растворах сульфаты цинка, железа и меди. Для реализации указанного превращения реагент-восстановитель по своим термодинамическим свойствам и его концентрация должны обеспечивать окислительно-восстановительный потенциал (ОВП) системы не менее +0,8 В. Из числа удовлетворяющих этому условию восстановителей следует выбирать доступные и дешевые реагенты, по возможности растворимые в водных растворах. Опыты показывают, что с приемлемой скоростью восстановительное выщелачивание ферритов цинка и меди протекает при использовании некоторых спиртов, гидразинов, сахара, формиатов и других органических восстановителей:

24ZnFe2O4+С12Н 22O11+72h3SO4 =24ZnSO4+48FeSO4+83h3O+12CO 2

2ZnFe2O4+2HCOONa+7H 2SO4=2ZnSO4+4FeSO4+Na 2SO4+2CO2+8h3O

Для практической переработки цинковых кеков представляет интерес использовать в качестве восстановителя металлическое железо и цинк:

ZnFe2O4+Fe+4H 2SO4=ZnSO4+3FeSO4+4Н 2O,

ZnFe2O4+Zn+4H 2SO4=2ZnSO4+2FeSO4+4Н 2O,

в т.ч. отходы оцинкованного железа.

Установлено, что в рассматриваемой системе восстановителем может быть сульфидная сера, входящая в нерастворенные сульфиды кека. Положительный эффект достигается при добавке к кеку перед выщелачиванием исходного концентрата:

4ZnFe 2O4+ZnS+12h3SO4=5ZnSO 4+8FeSO4+12Н2O.

Гетерофазный характер такого взаимодействия, осложняемый образованием поверхностных промежуточных продуктов, ограничивает кинетику и степень целевого превращения. Скорость данного варианта, привлекательного с технологической точки зрения, может быть увеличена интенсивным перемешиванием Восстановительное выщелачивание ферритов может быть реализовано при использовании газообразных восстановителей, например диоксида серы, в автоклаве:

2ZnFe2O4 +SO2+4h3SO4=2ZnSO4 +4FeSO4+4Н2O.

По причине ограниченной растворимости диоксида серы в сернокислых растворах скорость данного процесса также не велика. Указанные восстановители могут быть использованы как селективно, так и в различных сочетаниях.

При восстановительном выщелачивании цинк, железо и медь, входящие в состав ферритов, переходят в раствор. В нерастворенном остатке (вторичном кеке) остаются неокисленные при обжиге сульфиды, оксид и сульфат свинца, кварц и другие нерастворимые минеральные формы, изначально присутствующие в сырье. Структура твердой фазы кеков при восстановительном выщелачивании претерпевает изменения, важнейшим следствием которых является близкое к полному вскрытие благородных металлов. Опыты показывают, что флотацией в оптимальных режимах степень извлечения серебра в концентрат достигает 90-95%.

Поскольку содержание сульфидов во вторичных кеках восстановительного выщелачивания может достигать 25-50%, а суммарное содержание благородных металлов не превышает 0,1-0,2%, селективное (без сульфидов) флотационное выделение последних в пенный продукт не представляется возможным. В этой связи флотацию проводят в две стадии. Сначала из вторичного кека выделяют коллективный концентрат, в котором преобладает сульфид цинка. Содержание благородных металлов в коллективном концентрате составляет 0,05-0,08%. Первую стадию флотации проводят в известных режимах с использованием в качестве собирателя ксантогената при pH=8-9. На второй стадии коллективный концентрат перечищают с использованием в качестве собирателя диалкилдитиофосфата натрия с расходом 50-500 г/т. Установлено, что для обеспечения селективности флотации и повышения качества концентрата благородных металлов перечистную флотацию следует проводить в слабокислой среде при pH=3,5-5. Сульфиды цинка при этом остаются в хвостах, данный продукт возвращают на обжиг. Растворы восстановительного выщелачивания направляют на извлечение цинка в гидрометаллургическую часть общей технологической схемы. Хвосты коллективной флотации направляют на извлечение свинца. Концентрат благородных металлов с содержанием серебра до 1% служит сырьем аффинажного производства.

В отличие от прототипа для получения богатого по драгметаллам продукта требуется всего три технологических приема: восстановительное выщелачивание, коллективная флотация и перечистная флотация.

Примером реализации предлагаемого способа служат результаты следующих опытов.

Цинковый кек (Челябинский цинковый завод) содержал 18,3% n, 1,4% Сu, 24,8% Fe, 4,9% Pb, 320 г/т Ag. Навески кека массой 100 г перемешивали в растворах серной кислоты с концентрацией 100 г/л при Ж:Т=5:1 в течение 2 часов при температуре 90°C. В качестве восстановителя использовали формиат натрия, сахар, металлическое железо и оцинкованное железо в виде мелких обрезков проволоки, добавляемые в пульпу в избытке. По окончании опытов фильтрованием отделяли нерастворенный остаток. Взвешиванием оценивали выход вторичного кека, анализом продуктов определяли степень извлечения цинка в раствор и содержание серебра в кеке. Целевое опробование показало, что в условиях восстановительного выщелачивания переход серебра в раствор исключен. Результаты опытов с разными восстановителями представлены в таблице 1.

Во второй серии опытов при помощи платинового электрода контролировали окислительно-восстановительный потенциал пульпы и варьировали температурой. В качестве восстановителя использовали сахар. Результаты представлены в таблице 2

Таблица 2
Расход сахара, г ОВП, ВТемпература, С Степень выщелачивания цинка, %Содержание серебра в остатке, г/т
1 0,50,37 7532396
21 0,777558 430
3 50,82 8082549
410 0,858593 684
5 200,89 9096698
620 0,899597 705

В третьей серии опытов провели выщелачивание кеков сахаром в оптимальных режимах (таблицы 1, 2) и нерастворенные остатки флотировали в две стадии. На стадии перечистки варьировали расходом собирателя диалкилдитиофосфат натрия (БТФ 1522) и pH пульпы. Результаты представлены в таблице 3.

Таблица 3
Расход БТФ 1522, г/т pH пульпыСодержание серебра в концентрате, г/тИзвлечение серебра в к-т из исходного кека, %
1 3083615 64
250 64930 79
3100 46650 87
4300 47680 92
5500 3,58773 94
6700 3,08740 90

Для сравнения проведен опыт, в котором кек указанного состава перерабатывали по способу прототипа: флотация и высокотемпературное выщелачивание в режимах, приведенных в описании изобретения. Анализ полученных продуктов показал, что извлечение серебра во флотоконцентрат не превысило 73%. Причиной недостаточного извлечения является ассоциированность драгметаллов в структуру ферритов, которые не флотируются. Последующие обжиг и высокотемпературное выщелачивание флотоконцентрата и многостадийная его переработка согласно формуле прототипа позволили получить богатый продукт, но сквозное извлечение серебра в него остается неизменно низким. С этой точки зрения предлагаемое в настоящем изобретении предварительное вскрытие драгметаллов восстановительным выщелачиванием обеспечивает более высокую эффективность последующей флотации.

Сопоставительный анализ известных технических решений, в т.ч. способа, выбранного в качестве прототипа, и предлагаемого изобретения позволяет сделать вывод, что именно совокупность заявленных признаков обеспечивает достижение усматриваемого технического результата. Реализация предложенного технического решения за счет восстановительного характера выщелачивания позволяет увеличить извлечение серебра в концентрат при последующей флотации на 15-20% по сравнению со способом прототипа. Для получения богатого по драгметаллам продукта требуется меньшее количество технологических стадий.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Способ переработки цинковых кеков, включающий стадии флотации и высокотемпературного сернокислотного выщелачивания, отличающийся тем, что на первой стадии проводят сернокислотное выщелачивание цинковых кеков при температуре 80-90°C в присутствии восстановителя, обеспечивающего восстановительный потенциал выщелачивающего раствора более +0,8 В, раствор направляют на извлечение цинка, нерастворенный остаток подвергают основной флотации ксантогенатом при pH=8-9, пенный продукт подвергают перечистной флотации при pH=3,5-5 с использованием в качестве собирателя диалкилдитиофосфата натрия с расходом 50-500 г/т, флотоконцентрат направляют на извлечение благородных металлов, хвосты основной флотации - на извлечение свинца, а хвосты перечистной флотации - на извлечение цинка в основном производстве цинка.

2. Способ по п. 1, отличающийся тем, что в качестве восстановителя при сернокислотном выщелачивании используют железный скрап, отходы оцинкованного железа, сульфидный цинковый концентрат, формиат натрия, сахар по отдельности и/или в различных сочетаниях.

www.freepatent.ru

Способ водной отмывки цинковых кеков

Изобретение относится к области металлургического производства цинка, в частности к отмывке промышленных продуктов цинкового производства, например цинковых кеков. В пульпу цинкового кека вводят воду, содержащую бутиловый ксантогенат. Расход бутилового ксантогената составляет (2,5-3,0)·10-2% от веса цинкового кека. Компоненты смешивают путем механического перемешивания и аэрации, обеспечивается получение цинкового кека с содержанием серы 1,1-1,4%, в т.ч. серы сульфатной 0,9-1,1%, серы сульфидной 0,2-0,3%. При переработке кека в вельц-печах повышаются технико-экономические показатели вельцевания, а содержание серы в отходящих газах вельц-печей снижается с 0,027 до

ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ

Изобретение относится к области металлургического производства цинка, в частности отмывке промышленных продуктов цинкового производства, например цинковых кеков. Известен способ водной промывки промпродуктов цинкового производства, например цинковых кеков, включающий фильтрацию кека на рамных вакуум-фильтрах, его отдувку (сброс) в промывочный бункер, перемешивание сжатым воздухом и последующую фильтрацию на дисковых вакуум-фильтрах (А.П. Снурников. Гидрометаллургия цинка. - М., 1981 с. 153). Недостатком указанного способа является низкая степень отделения серосодержащих соединений цинка (сульфатов, сульфидов), высокое остаточное содержание серы в кеке, что осложняет его дальнейшую переработку, например в вельц-печах. Ближайшим к изобретению по технической сущности и достигаемому результату (прототипом) является способ противоточной промывки цинковых кеков, включающий противоточную промывку с использованием в качестве промывочной жидкости воды с добавкой в качестве вспомогательного вещества серной кислоты в количестве, обеспечивающем pH пульпы равным 1-4, и реализуемый путем противоточного перемешивания в трех последовательно расположенных реакторах, ("Способ водной промывки пульпы цинковых кеков" А.с. N 648631 от 24.05.77). Недостатком указанного способа является высокое остаточное содержание серы в цинковом кеке в виде сульфидов и сульфатов цинка, так из-за невысокой степени отмывки сульфатов остаточное содержание серы сульфатной в кеке составляет 2-3%, а сульфидная сера (1-2%) практически полностью остается в кеке. Сульфатная и сульфидная сера осложняет дальнейшую переработку кека. Так при вельцевании материал расплавляется, что приводит к повышенному расходу коксика и увеличивает потери цинка с клинкером. Предложен способ водной отмывки цинковых кеков с использованием в качестве вспомогательного вещества бутилового ксантогената при его расходе, равном (2,5 - 3,0)10-2 отвеса цинкового кека, и последующее смешение компонентов, которое осуществляется путем аэрации и механического перемешивания. Предложенный способ испытан в промышленных условиях. Испытания показали, что указанный способ позволяет практически полностью отмыть цинковый кек от сульфатов, и удалить в виде "цинкового концентрата" сульфиды. Полученный после такой обработки цинковый кек может быть без осложнений переработан в вельц-печах. Сведения, подтверждающие возможность осуществления предложенного способа. Проверка способа водной отмывки цинкового кека осуществлялась следующим образом. В пульпу цинкового кека с твердой фазой, на 80-97% состоящей из частиц с размером менее 60 мкм, с жидкой фазой, (содержание цинка 80 - 150 г/л), вводили воду (расход 0,5-0,7 кг/т кека), содержащую бутиловый ксантогенат. Расход бутилового ксантогената составляет (2,5 - 3,0)10-2% от веса цинкового кека. Далее компоненты смешивали путем аэрации и механического перемешивания. Дозировка бутилового ксантогената к пульпе промышленных продуктов цинкового производства, например цинковых кеков позволяет интенсифицировать процесс отмывки водой сульфатов цинка, отделения от цинкового кека сульфидов цинка и обеспечить эффективную переработку цинкового кека в вельц-печах. "Раствор" после отмывки цинкового кека проходит через сгуститель, где осаждаются сульфиды в виде "цинкового концентрата", и направляется далее на извлечение цинка. "Цинковый концентрат" возвращается на обжиг или гидрометаллургическое извлечение цинка и сопутствующих металлов. В таблице и примере приведены сравнительные данные известного способа отмывки (по прототипу) и предлагаемого. Пример. Пульпа цинкового кека, полученного после выщелачивания огарка, имеет следующую характеристику: содержание твердого в пульпе 50-500 г/л; pH 4,5-5,1; состав твердой фазы, %: цинк - 19-22; сера общая - 5,5-6,5; сера сульфатная - 4,5-5,1; сера сульфидная - 0,8-1,3; железо - 25-30; медь - 2,6-2,8; свинец - 1,5-2,5; серебро - 0,025-0,044. Цинк связан с серой сульфатной, сульфидной, а также в форму ферритов и частично силикатов. ситовая характеристика твердой фазы: класс, мкм +100 +50 -50 выход класса,% 0,7 1,2 98,1. В пульпу после выщелачивания подавали водный раствор бутилового ксантогената калия с концентрацией 1-2% из расчета, чтобы его расход составил [2,2; 2,5; 2,7; 3,0; 3,2]·10-2 от веса цинкового кека. Затем пульпу направляли в реактор, где она перемешивалась сжатым воздухом. "Раствор" вместе с частицами ("цинковый концентрат") постоянно через боковое отверстие в верхней части реактора сливался и направлялся на отстаивание и последующую фильтрацию. Отмытый цинковый кек в виде пульпы с ж:т=2:1 через отверстие в нижней части реактора направлялся на сгущение и фильтрацию на дисковых вакуум-фильтрах. Отфильтрованный кек подвергался сушке и переработке в вельц-печах. При этом получали цинковый кек с содержанием серы сульфидной - 0,2-0,3%, серы сульфатной 0,9-1,1%. Скорость фильтрации цинкового кека составила 1,2-1,3 т/м3 сут. Переработка кека в вельц-печах протекала стабильно, образование расплавов ("ванн") не наблюдалось, расход коксовой мелочи составил 350 кг/тн кека, содержание цинка в клинкере 0,4%, а сернистого ангидрида в отходящих газах вельц-печей менее 0,01%. Для сравнения проведен опыт по прототипу, при этом в качестве вспомогательного вещества в воду вводили серную кислоту в количестве, обеспечивающем pH пульпы цинкового кека равном 3,5. Пульпу промывали путем противотока в трех последовательно расположенных сгустителях. Сгущенный продукт фильтровали на дисковых вакуум-фильтрах, сушили и перерабатывали в вельц-печах. Полученный цинковый кек содержал: серы сульфидной - 1,1-1,2%, серы сульфатной - 2,5-2,6%. Скорость фильтрации указанного кека составляла 1,0 - 1,1 т/м сут. При последующем его вельцевании процесс протекал неустойчиво: происходило залегание материала с образованием "ванн", расход коксика составлял 380 кг/тн кека, а содержание цинка в клинкере находилось на уровне 1,0-1,2%. В отходящих газах вельц-печей, выбрасываемых в атмосферу, содержание сернистого ангидрида составило 0,027%. "Раствор" после отмывки цинковых кеков с содержанием твердого (около 3 г/л) проходит через сгуститель, где происходит отделение "цинкового концентрата", и далее направляется в основной цикл цинкового производства на извлечение цинка. Цинковый концентрат имеющий состав, %: цинк - 31-35; железо - 15-20; медь - 3,9-4,1; свинец 2,5-3,0; сера сульфидная - 13-15; сера сульфатная - 0,5-0,6; серебро - 0,2-0,4, направляется в голову процесса на обжиг или вовлекается в гидрометаллургическую переработку с извлечением цинка и сопутствующих компонентов. Технологические показатели водной отмывки цинковых кеков от серосодержащих соединений цинка приведены в таблице. Как видно из таблицы, повышение расхода бутилового ксантогената более 3,0·10-2 нецелесообразно, т.к. не приведет к снижению содержания серы в цинковом кеке и повышению показателей вельцевания. Снижение расхода бутилового ксантогената ниже 2,2·10-2 не дает существенного положительного эффекта. Таким образом, при использовании в предлагаемом способе в качестве вспомогательного вещества бутилового ксантогената оптимальный расход его составляет (2,5-3,0)·10-2% от веса цинкового кека. Использование предлагаемого способа, по сравнению с известным обеспечивает: снижение содержания серы в цинковом кеке: сульфидной с 1,1-1,2% до 0,2-0,3% сульфатной с 2,5-2,6% до 0,9-1,1% повышает показатели вельцевания содержание цинка в клинкере снижается с 1,2 до 0,4%; содержание сернистого ангидрида в отходящих газах вельц-печей снижается с 0,027 до получается сероцинксодержащий промпродукт - "цинковый концентрат", пригодный для извлечения цинка и сопутствующих металлов.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Способ водной промывки цинковых кеков, включающий смешивание путем механического перемешивания и аэрации пульпы цинкового кека с водой, содержащей вспомогательное вещество, отличающийся тем, что в качестве вспомогательного вещества используют бутиловый ксантогенат при его расходе, равном (2,5 - 3,0)·10-2% от веса цинкового кека.

bankpatentov.ru


Смотрите также