Кек никельсодержащий


54.Обжиг никелевых концентратов с получением закиси никеля

Флотационные никелевые концентраты процесса разделения меди и

никеля вначале подвергают одностадийному окислительному обжигу в

печах КС при 1100-1200°С. Полученная при обжиге закись никеля

содержит менее 0,5 % S. Глубокой десульфуризации закиси никеля в дан-

ном случае проводить нет необходимости, так как черновой никель

обязательно подвергают электролитическому рафинированию, при

котором сера, практически полностью связанная с медью (Cu2S), перейдет

в шлам. После выпуска закиси никеля из печи КС ее предварительно

восстанавливают в трубчатом отапливаемом реакторе, что существенно

экономит электроэнергию при последующей плавке на черновой никель.

55.Восстановительная плавка закиси никеля

Восстановительную плавку закиси никеля проводят в дуговых

электрических печах по технологии, близкой к переработке никелевого

файнштейна на огневой никель. Различие заключается лишь в том, что

плавку ведут без наведения шлака, а готовый никель разливают на

карусельной разливочной машине в аноды с заливкой в них ушков из

никеля. Полученный черновой никель гранулируют перед карбонильным

рафинированием.

56.Электролитическое рафинирование никеля

Анодный никель - сложный по составу сплав, содержащий, по крайней

мере, двенадцать металлических элементов, включая железо, и химические

соединения металлов с селеном,теллуром,кислородом и серой.

Цель рафинирования чернового никеля сводится к получению чистого

катодного никеля не ниже марок Н-0 и Н-1 и попутному извлечению

присутствующих в анодном металле ценных спутников; кобальта,

платиноидов, золота, серебра, меди, селена и теллура. Марки

электролитного никеля Н-0 и Н-1, согласно ГОСТ 849-70, должны содер-

жать никеля и кобальта соответственно не менее 99,99 и 99,93%. В составе

марки Н-0 регламентируется содержание 17 примесных элементов,

включая кобальт. Электролизу подвергают аноды следующего состава, %:

89-92 Ni; 4-5 Cu; 1,5-3,5 Fe; 2-2,5 Со; до 2 S.

Электролитическое рафинирование никеля - сложный

электрохимический процесс. Никель является электроотрицательным111

металлом, и поэтому такие примеси, как кобальт, железо, цинк, медь, а

также катионы водорода могут совместно с ним или раньше разряжаться

на катоде. Для предотвращения загрязнения катодного никеля примесями

и снижения выхода по току из-за разряда ионов водорода необходимо

выполнение следующих условий:

1) тщательная очистка электролита от примесей;

2) применение оптимального состава электролита и режима

электролиза;

3) разделение анодного и катодного пространств слабо фильтрующей,

химически и механически стойкой диафрагмой;

4) обеспечение оптимальной циркуляции электролита.

Для электролиза никелевых анодов применяют сульфат - хлоридные

электролиты, содержащие небольшое количество свободных катионов

водорода. Основными компонентами электролита являются сульфаты

никеля и натрия и хлорид никеля. Для автоматического регулирования рН

электролита в пределах 2,5-5 вводят борную кислоту, которая, в

зависимости от изменений кислотности.электролита и выполняя роль

буферной добавки, будет диссоциировать по-разному:

В

3+ + 3ОН-

= h4BO3 = 3H+

+ BO3

+

Применяемые никелевые электролиты содержат, г/л: 70-110 Ni2+; 20-25

Na+

; 40-80 Cl-

; 110-160 SO4

2-; 4-6 Н3ВО3. Электролиз никелевых анодов

ведут в электролизных ваннах ящичного типа. Аноды и катодные основы,

полученные электролитическим наращиванием никеля на титановых

матрицах, завешивают в ванны поочередно.

Анодный процесс сводится к электрохимическому растворению

никеля, кобальта, железа и меди; благородные металлы и нерастворимые в

электролите химические соединения осыпаются в шлам. Единственно

допустимым процессом на катодах в условиях электролитического

рафинирования никеля является разряд (восстановление) катионов никеля

по реакции Ni2+ + 2e = 2Ni. Все остальные катодные реакции ведут либо к

загрязнению катодного никеля, либо снижают выход по току.

Получение чистых катодных осадков на практике достигается

отделением катодного пространства от общего объема загрязненного

электролита с помощью катодных диафрагм и особой системой

циркуляции электролита. Загрязненный электролит - анолит - непрерывно

выводят из ванн на обязательную очистку от железа, кобальта и меди и

периодическую очистку от ряда других примесей. После очистки чистый

электролит с помощью распределительной гребенки с ниппелями,

размещенной вдоль одного из бортов ванн, подается в каждую катодную

диафрагму. Подачу католита регулируют таким образом, чтобы его уровень в

катодной диафрагме превышал уровень электролита в ванне на 30-40 мм. В

результате этого обедненный никелем католит под действием

гидростатического давления проходит через поры диафрагмы и, как бы

отталкивая анолит от диафрагмы, не дает примесям проникать в катодную

ячейку.

На аноде электрический ток расходуется не только на растворение

никеля, но и других металлов. Такое же количество электричества

(электронов) должно быть израсходовано и на катоде, но только на один

процесс - разряд катионов никеля. В итоге получается, что количество

осажденного на катоде никеля всегда превышает его поступление с анода.

Возникает дефицит никеля в катодном пространстве, который усиливается

его потерями во время очистки анолита. Для устранения дефицита,

выводимый на очистку анолит обогащают никелем, за счет растворения в

нем никельсодержащих материалов. Электролитическое рафинирование

никеля проводят в ваннах, объединенных по две в блоки и разделенных

продольной стенкой. В ваннах устанавливают от 32 до 44 диафрагм, в

которые помещают столько же катодных основ. Анодов в ваннах

никелевого электролиза на один больше, чем катодов.

Катодная диафрагма представляет собой раму из армированного

титановыми скобами профилированного полипропилена. Рама обтянута

плотной тканью. Для диафрагм используют специальные сорта брезента,113

хлориновую ткань и другие синтетические материалы, обладающие

низкими фильтруемостью и электрическим сопротивлением.

Для подачи католита в ванны служат гребенки из винипласта с

калиброванными ниппелями, снабженными резиновыми трубочками. По

этим трубочкам в каждую диафрагму подают католит. Скорость подачи ка-

толита регулируют по уровню в диафрагменной ячейке.

Процесс электролитического рафинирования никеля характеризуется

следующими режимными параметрами и показателями: плотность тока,

А/м2

240-350; температура электролита, °С 55-75; напряжение на ванне, В

2,6-3,0; выход по току, % 95-97; расход электроэнергии на 1 т никеля, кВт-

ч 2400-3300.

Очистка анолита включает три основные операции - очистку от железа,

меди и кобальта. При очистке никелевых растворов стремятся не

загрязнять их посторонними реагентами. По этой причине в качестве

реагентов обычно используют никельсодержащие материалы. Это

позволяет одновременно частично обогатить католит никелем.

Железо в анолите содержится в основном в форме FeSO4. Для очистки

его необходимо перевести в трехвалентное состояние с последующим

гидролитическим осаждением (Fe2O3

.Н2О). Окислителем служит кислород

воздуха. Очистку от железа проводят в чанах с воздушным пере-

мешиванием (пачуках). Для нейтрализации образующейся при гидролизе

серной кислоты в электролит вводят карбонат никеля. Химизм очистки от

железа описывается следующими реакциями:

2 FeSO4 + ½ O2 + 5 h3O = 2 Fe(OH)3 + 2 h3SO4

2 h3SO4 + 2 NiCO3 = 2 NiSO4 + 2 h3O + 2 CO2

Первичные железистые кеки содержат 8-12 %Ni. После отделения

кеков от раствора на свечевых или дисковых фильтрах их дважды

подвергают кислотной репульпации с целью извлечения части никеля и

далее плавят вместе с рудным сырьем в руднотермических печах.

После очистки от железа раствор обезмеживают цементацией меди

никелевым порошком. Никелевый порошок должен обладать высокой

активностью (не ниже 50%) и развитой поверхностью. Это достигается

путем восстановления закиси никеля водородом или водяным газом при

500-550 °С в муфельных печах. При воздействии металлического никеля

на раствор медь выпадает в осадок, по реакции

CuSO4 + Ni = Cu + NiSO4.

Очистку от меди необходимо проводить в отсутствие кислорода; в

противном случае возможно ее обратное окисление и растворение. На

практике обезмеживание ведут в механических мешалках или в

специальных аппаратах - цементаторах.

Цементатор - аппарат с вертикальным рабочим пространством и

переменным поперечным сечением. Раствор, предназначенный для

очистки, подается в нижнюю часть цементатора, а сливается вверху.114

Никелевый порошок подается либо на поверхность раствора, либо на вход

нагнетательных насосов его подачи в цементатор. В верхней части

аппарата скорость вертикального потока снижается из-за резкого

расширения корпуса, в результате чего частицы твердых материалов

образуют четко выраженный кипящий слой, который удерживается на

глубине около 2 м от сливного порога. Выделившуюся из раствора

цементную медь периодически выпускают из цементатора и направляют в

медное производство.

Очистку от кобальта проводят способом, аналогичным очистке от

железа, но используют в качестве окислителя газообразный хлор.

Суммарный итог очистки электролита от кобальта можно выразить

следующей реакцией:

2 CoSO4 + С12 + 3 h3O + 3 NiСО3 = 2 Со(ОН)3 + 2 NiSO4 + NiCl2 + 3

CO2

Для проведения процесса используют герметизированные барботеры -

пачуки. Первичные кобальтовые кеки содержат около 10 % кобальта и

примерно столько же никеля. После двукратной репульпации кека никель

переводят в основном в раствор и получают кобальтовый концентрат,

содержащий кобальт и никель в соотношении не ниже (15-10): 1. Этот

продукт является сырьем для производства кобальта.

Очищенный от примесей электролит (католит) содержит, %: <0,0003

Fe; <0,008 Cu; 0,008-0,012 Со. В случае необходимости католит

дополнительно очищают от свинца, цинка, органических и некоторых

других примесей.

studfiles.net

Способ переработки железистого кека

 

Изобретение относится к гидрометаллургии никеля, в частности к процессам переработки железистых кеков. Способ включает смешение железистого кека с хлоридом натрия в количестве 30% от массы сырого кека, репульпацию раствором серной кислоты, осаждение железа при рН 3 сульфитом натрия, термолиз фильтрата, обеспечивается получение железного концентрата и порошка оксида железа (III), пригодного для производства красного железоокисного пигмента, и снижение потерь цветных металлов за счет их возврата в процесс. 1 з.п. ф-лы, 1 табл.

Изобретение относится к области гидрометаллургии никеля, в частности к процессам переработки железистых кеков, получаемых при гидролитической очистке никелевого анолита от железа.

Известен способ растворения гидроксида металла и восстановления металла, включающий репульпацию железистого кека в воде в присутствии серной кислоты и его восстановление сульфидным концентратом при температуре 75С (см. авт. свид. СССР, № 621768, кл.2 С 22 В 3/00, С 22 В 5/00, С 25 С 1/08, 1978).

К причинам, препятствующим достижению указанного ниже технического результата при использовании известного способа, относится то, что в получаемом железистом кеке после выполнения всех операций сохраняется высокое остаточное содержание никеля и меди, что требует дальнейшей его переработки или возврата его в начало процесса, собственно перевода железистого кека в состояние истинного раствора не происходит, а наблюдается перераспределение меди и никеля вследствие протекания твердофазных реакций между железистым кеком и никелевым сульфидным концентратом, находящихся в растворе в виде суспензии.

Известен способ гидрометаллургической переработки железистых кеков цветной металлургии, включающий нагрев водной суспензии железистого кека до 140-200С при давлении 5-12 ати и значении рН конечного раствора 0,8-1,5. После термообработки пульпы осадок отстаивается, а раствор декантируется. Далее осадок прокаливается до получения оксида железа (III) Fe2O3 (см. авт. свид. СССР № 254081, С 22 В 3/00, 1969).

К причинам, препятствующим достижению указанного ниже технического результата при использовании известного способа, относится то, что гидротермальная обработка пульпы в указанных условиях не позволяет получить однородные по дисперсности частички гематита Fe2О3, а по ряду других показателей получаемый продукт не отвечает требованиям, предъявляемым к исходному материалу для производства красных железооксидных пигментов. Для реализации процесса необходимо дорогостоящее автоклавное оборудование, работающее при высоких температурах и давлении.

Известен способ переработки железистого кека, включающий обжиг при температуре 700-800С в течение 3-5 ч, выщелачивание огарка после обжига водой при 60-80С при рН 2-3, фильтрацию полученного кека, промывку остатка с выделением отвального железистого кека и раствора, содержащего цветные металлы (см. авт. свид. СССР № 1203121, С 22 В 3/00, 1986).

К причинам, препятствующим достижению указанного ниже технического результата при использовании известного способа, относится то, что в результате реализации процесса конечным продуктом является отвальный железистый кек, к тому же частично содержащий извлекаемые цветные металлы, а получаемый раствор требует дополнительной очистки от примесей перед сбросом даже в сборники "грязного" анолита.

Наиболее близким способом того же назначения к заявленному изобретению по совокупности признаков является способ переработки кобальтового кека, включающий его репульпацию в воде, подкисление образующейся пульпы серной кислотой до рН 1,8-2,2 и продувку пульпы газовоздушной смесью, содержащей 18-20% SO2 по объему. Диоксидом серы восстанавливают гидроксид кобальта (III) до сульфата кобальта (II). Последующая нейтрализация раствора солей содой до рН 6,0-6,7 позволяет осадить железо и медь. Далее железомедный кек репульпируют в сернокислой среде (до 2 г/л Н2SО4), получают отвальный железный кек и фильтрат, направляемый на дальнейшую переработку (см. Резник И.Д., Соболь С.И., Худяков В.М. Кобальт: в 2 т. Т.2: Гидрометаллургия. - М.: Машиностроение, 1995. С.278-279).

К причинам, препятствующим достижению указанного ниже технического результата при использовании известного способа, относится то, что восстановлением диоксидом серы в кислой среде достигается только перевод гидроксида железа (III) железистого кека в железо (II), раствор при этом переходит в коллоидное состояние, процесс длителен во времени (до 10 ч), а на последующих операциях необходимо применение дорогостоящих автоклавов большой емкости.

Перевод гидроксида железа (III) путем восстановления его диоксидом серы в состояние истинного раствора затруднен из-за сложного структурно-морфологического состава железистого кека, сокращение времени обработки пульпы неприемлемо из-за невозможности за более короткое время перевести железо (III) в железо (II), использование же автоклавного синтеза значительно усложняет и удорожает процесс переработки железного промпродукта.

Сущность изобретения заключается в смешении железистого кека с хлоридом натрия, репульпации смеси в воде, отделении твердого от жидкого. Твердый остаток растворяют в серной кислоте и осаждают содержащееся в растворе железо сульфитом натрия. Сульфит железа отфильтровывают, промывают, подсушивают и прокаливают при температуре 600С. Фильтрат же подвергают термолизу, фильтруют и направляют на дальнейшую переработку. Осадок подсушивают, прокаливают при 600С.

Технический результат заключается в ускорении и упрощении процесса переработки железистого кека и получении порошка оксида железа (III), отвечающего нормативным требованиям на производство железного концентрата и пигмента красного железоокисного.

Указанный технический результат при осуществлении изобретения достигается тем, что в известном способе переработки железистого кека, включающем репульпацию водой, добавление к смеси серной кислоты, осаждение железа и фильтрацию, перед репульпацией кек смешивают с хлоридом натрия, полученную после репульпации суспензию фильтруют с отделением раствора и твердого остатка, который растворяют в серной кислоте, а осаждение железа осуществляют сульфитом натрия до рH 3,0 в виде малорастворимого в воде сульфита железа (II), прокаливание же ведут при 600С.

Введение хлорида натрия в железистый кек приводит к его пептизации, образованию адсорбционно-сольватных солей и, как следствие, высвобождению ионов цветных металлов. Этому же способствует введение в систему раствора серной кислоты. Однако окончательное разрушение мицелл железа (III) происходит в результате реакции восстановления гидроксида железа (III) сульфит-ионами. При этом при рН 3,0 одновременно происходит осаждение железа (II) в виде сульфита железа, ионы же цветных металлов остаются в маточном растворе. Последующая отмывка водой и прокаливание при температуре 600С позволяют удалить микропримеси цветных металлов и получить железный концентрат и кондиционный материал для производства пигментов.

Принципиальное отличие предлагаемого способа от известного заключается в том, что перед репульпацией кека в воде проводят операцию пептизации хлоридом натрия.

Другое отличие состоит в том, что осаждение железа проводят при рН 3,0 раствором сульфита натрия в виде малорастворимого в воде сульфита железа (II), а не карбоната железа (II).

Кроме того, сопоставительный анализ заявляемого решения с прототипом показывает, что заявляемый способ отличается от известного также тем, что вводимый сульфит-ион является не только восстановителем, но и комплексующим агентом, переводящим в раствор трудновскрываемые формы железа кека.

Проведенный заявителем анализ уровня техники, включающий поиск по патентным и научно-техническим источникам информации, и выявление источников, содержащих сведения об аналогах заявленного изобретения, позволил установить, что заявитель не обнаружил источник, характеризующийся признаками, тождественными всем существенным признакам заявленного изобретения. Определение из перечня выявленных аналогов прототипа, как наиболее близкого по совокупности признаков аналога, позволило установить совокупность существенных по отношению к усматриваемому заявителем техническому результату отличительных признаков в заявленном способе, изложенных в формуле изобретения.

Таким образом, заявленное изобретение соответствует условию "новизна".

Для проверки соответствия заявленного изобретения условию "изобретательский уровень" заявитель провел дополнительный поиск известных решений, чтобы выявить признаки, совпадающие с отличительными от прототипа признаками заявленного способа. Результаты поиска показали, что заявленное изобретение не вытекает для специалиста явным образом из известного уровня техники, поскольку из уровня техники, определенного заявителем, не выявлено влияние предусматриваемых существенными признаками заявленного изобретения преобразований для достижения технического результата, в частности заявленным изобретением не предусматриваются следующие преобразования:

- дополнение известного способа переработки железистого кека известной операцией, присоединяемой к нему по известным правилам, для достижения технического результата, в отношении которого установлено влияние именно такого дополнения;

- замена какой-либо части известного способа переработки железистого кека другой известной частью для достижения технического результата, в отношении которого установлено влияние именно такой замены;

- исключение какой-либо операции способа переработки железистого кека с одновременным исключением обусловленной ее наличием функции и достижением при этом обычного для такого исключения повышения качества получаемого раствора, сокращения продолжительности процесса, получения нового продукта;

- увеличение количества однотипных элементов, действий для усиления технического результата, обусловленного наличием в способе именно таких элементов, действий;

- создание способа переработки железистого кека, состоящего из известных операций, выбор которых и связь между которыми осуществлены на основании известных правил, рекомендаций, и достигаемый при этом технический результат обусловлен только известными свойствами частей этого способа и связей между ними.

Описываемое изобретение не основано на изменениях количественных признаков, представлении таких признаков во взаимосвязи либо изменении ее вида.

Следовательно, заявленное изобретение соответствует условию "изобретательский уровень".

Способ осуществляется следующим образом.

Железистый кек с помощью шнекового смесителя, в который из тарельчатого питателя подается хлорид натрия в виде порошка, перемещается в пачук, наполненный водой, с механической мешалкой. Полученная суспензия при достижении Т:Ж=4:1 фильтруется. Раствор направляется на дальнейшую переработку, а твердый остаток растворяется в серной кислоте с массовой долей 0,5. Пульпа перемешивается в течение 15-20 мин, и в нее вливается раствор сульфита натрия с концентрацией 1,5 моль/л до достижения рН 3,0. Для завершения реакции полученный раствор выдерживают в течение 0,5 часа и затем отфильтровывают выпавший осадок. Полученный осадок промывают водой, подсушивают и прокаливают при 600С. Фильтрат же подвергают термолизу, улавливая отходящий диоксид серы раствором соды. Остаток термолиза подсушивают и прокаливают при 600С. Фильтрат же термолиза, фильтрат первой стадии, промводы объединяют и направляют на дальнейшую переработку либо в сборники грязного анолита никелевого производства, либо на получение монооксида меди, а сульфитно-содовый раствор возвращают на стадию осаждения сульфитом натрия.

Пример 1. 1 кг железистого кека с влажностью 50% смешивают с 300 г хлорида натрия, затем репульпируют в воде до отношения Т:Ж=4:1. Отфильтровывают осадок, добавляют к нему 0,5 дм3 серной кислоты с массовой долей 0,5 и перемешивают в течение 20 мин. В полученную таким образом суспензию подают 3,4 дм3 раствора сульфита натрия с молярной концентрацией 1,5 моль/л до значения рН 3,0. Для завершения реакции раствор перемешивают 0,5 часа и фильтруют. Осадок репульпируют в воде, отфильтровывают и трижды промывают водой порциями по 50 см3. Масса сырого осадка составила 2,76 кг. Общий объем фильтрата и промывных вод - 2,86 дм3. Далее осадок подсушивают и прокаливают при 600С. После прокаливания получен порошок массой 450 г. Фильтрат от операции осаждения сульфитом натрия подвергают термолизу. После отгонки диоксида серы раствор фильтруют. Полученный твердый остаток промывают однократно водой, подсушивают и прокаливают при 600С.

Пример 2. 1 кг железистого кека с влажностью 50% смешивают с 400 г хлорида натрия, репульпируют в воде, фильтруют. К твердому остатку прибавляют 0,574 дм3 серной кислоты с массовой долей 0,5 и перемешивают в течение 30 мин. В полученную таким образом суспензию подают 3,75 дм3 раствора сульфита натрия с молярной концентрацией 1,5 моль/л до значения рН 4,0. Для завершения реакции раствор выдерживают при перемешивании 0,5 часа и фильтруют. Осадок репульпируют в воде, отфильтровывают и трижды промывают водой порциями по 50 см3. Масса сырого осадка составила 2,24 кг. Общий объем фильтрата и промывных вод - 2,95 дм3. Далее осадок подсушивают и прокаливают при 600С. После прокаливания получен порошок массой 381 г.

Пример 3. 1 кг железистого кека с влажностью 50% смешивают с 200 г хлорида натрия, перемешивают, репульпируют в воде. Твердый остаток отфильтровывают, добавляют к нему 0,43 дм3 серной кислоты с массовой долей 0,5 и перемешивают в течение 20 мин. В полученную таким образом суспензию подают 3,4 дм3 раствора сульфита натрия с молярной концентрацией 1,5 моль/л до значения рН 3,0. Суспензия не растворяется.

Результаты опытов приведены в таблице.

Таким образом, изложенные сведения свидетельствуют о выполнении при использовании заявленного способа следующей совокупности условий:

- средство, воплощающее заявленный способ при его осуществлении, предназначено для использования в промышленности, а именно в гидрометаллургии, в частности при переработке железистого кека, а также может быть использовано для переработки различных полупродуктов металлургического производства: железистых кеков кобальтового производства, остатков выщелачивания пиритных концентратов и огарков.

- для заявленного способа в том виде, как он охарактеризован в независимом пункте изложенной формулы изобретения, подтверждена возможность его осуществления с помощью описанных в заявке средств и методов.

Следовательно, заявленное изобретение соответствует условию "промышленная применимость".

1. Способ переработки железистого кека, включающий репульпацию водой, добавление к смеси серной кислоты, осаждение железа и фильтрацию, отличающийся тем, что перед репульпацией кек смешивают с хлоридом натрия, полученную после репульпации суспензию фильтруют с получением раствора и твердого остатка, который растворяют в серной кислоте, а осаждение железа осуществляют сульфитом натрия до рН 3,0 в виде малорастворимого в воде сульфита железа (III).

2. Способ по п.1, отличающийся тем, что фильтрат от стадии осаждения сульфитом натрия подвергают термолизу.

www.findpatent.ru

Способ очистки гидролитических железистых кеков от никеля

Изобретение относится к области переработки никельсодержащих полупродуктов - железистых кеков, получаемых в процессе гидрометаллургического производства никеля. Способ включает репульпацию кеков кислотным раствором, содержащим соли щелочных металлов, при повышенной температуре и при поддержании рН пульпы 1,2-1,6. Репульпацию проводят в реакторе с механическим перемешиванием при удельной мощности перемешивания на первой стадии в пределах 500-1000 Вт/м3, а на второй - в пределах 5-100 Вт/м3. Техническим результатом является более глубокая очистка кеков от никеля, улучшение фильтруемости получаемых продуктов. 3 з.п. ф-лы, 5 табл.

Изобретение относится к области цветной металлургии, в частности к гидрометаллургической переработке промышленных продуктов электролитического производства никеля.

Известен способ очистки гидролитических железистых кеков от никеля и кобальта, включающий кислую репульпацию при повышенной температуре [Орехов М.А., Патюков Г.М., Халимова А.К. Изучение состава отвального железистого кека и некоторых закономерностей его формирования. «Цветные металлы», №9, 1971, с.50-54].

По известному способу часть пульпы железокобальтового кека растворяют в избытке кислоты, затем раствор нагревают до 85-90°С, доокисляют закисное железо пульпой гидроокисей, нейтрализуют кислоту содой до рН=3,3 с осаждением железа и последующим перемешиванием («выкруткой») осадка вместе с затравкой, продолжительность репульпации 6-11 ч. Получают хорошо фильтруемые основные соли железа. Основные недостатки способа - значительная продолжительность процесса и необходимость оборота в виде затравки хорошо фильтрующихся осадков.

Наиболее близким к предлагаемому является способ очистки гидролитических железистых кеков от никеля и кобальта (А.с. 827576 (СССР) / Гутин В.А., Соболь С.И., Фраш Т.М. и др. БИ, №17, 1981, с.103), по которому пульпу первичного железистого кека, содержащую 160-300 г/л твердого, нагревают до температуры 85-95°С, преимущественно 90-93°С, подкисляют до заданной величины рН и вводят хлористый калий в количестве 0,06-0,2 т/т кека. Величина рН пульпы 1,3-1,7 является оптимальной, при превышении ее заметно повышается остаточное содержание цветных металлов в кеке, при рН менее 1,3 увеличивается переход железа в раствор. Постоянную величину рН поддерживают добавками небольших количеств соды или поташа. В указанных условиях достигается перекристаллизация железистого кека с получением легко фильтруемого осадка, содержащего 0,4-0,6% никеля.

К недостаткам способа следует отнести то, что способ обеспечивает остаточное содержание никеля в железистом кеке на уровне 0,4-0,6%, что слишком высоко для кеков отвального качества, и низкую фильтруемость кеков.

Задачей изобретения является очистка гидролитического железистого кека от никеля. Техническим результатом, достигаемым при этом, является получение остаточного содержания никеля в кеке на уровне 0,1-0,2%, улучшение фильтруемости полученного кека.

Заявленный технический результат достигается тем, что в способе очистки гидролитических железистых кеков от никеля, включающем репульпацию кислотным раствором, содержащим соли щелочных металлов, при повышенной температуре и поддержании рН пульпы 1,2-1,6, согласно изобретению, репульпацию проводят в две стадии в реакторах с механическим перемешиванием, поддерживая удельную мощность перемешивания на первой стадии 500-1000 Вт/м3, а на второй 5-100 Вт/м3.

Преимущественной величиной рН репульпации является 1,3-1,4.

Время репульпации на первой стадии составляет не менее 30 минут, а на второй 5-7 часов.

Кроме того, с целью снижения расходов реагентов процесс репульпации железистых кеков может осуществляться в растворе сточных вод, содержащих сульфат и хлорид натрия.

Величина рН пульпы 1,2-1,6 (преимущественно 1,3-1,4) является оптимальной, при этом остаточное содержание никеля в железистом кеке составляет 0,1-0,2%, степень перехода железа в раствор не превышает 4-6%. В указанных условиях репульпации происходит превращение аморфных тонкодисперсных хлопьевидных агрегатов железистого кека в хорошо раскристаллизованный легко фильтруемый осадок, основу которого составляет ярозит натрия. В ходе перекристаллизации одновременно происходит несколько процессов: растворение гидратного железистого кека, образование зародышей кристаллов натроярозита, кристаллизация натроярозита на собственных зародышах и кристаллизация натроярозита на поверхности гидратной фазы. Технические результаты, заявленные в изобретении (остаточное содержание никеля в кеке на уровне 0,1-0,2%, улучшение фильтруемости полученного кека), достигаются при поддержании определенного соотношения скоростей вышеуказанных процессов, обеспечивающего получение крупнокристаллического легко фильтруемого осадка. Необходимое соотношение скоростей этих процессов достигается при поддержании определенной интенсивности перемешивания в ходе репульпации железистого кека.

Для получения крупнокристаллического осадка необходимо на первой стадии репульпации снижать скорость образования зародышей натроярозита и повышать скорость кристаллизации его на подложке. На первой стадии репульпации происходит интенсивное растворение части гидратного железистого кека и, следовательно, повышается содержание железа в растворе. При этом увеличивается скорость образования зародышей натроярозита, повышению скорости кристаллизации его на подложке препятствуют диффузионные ограничения, связанные с высокой вязкостью исходной пульпы железистого кека. Исходная пульпа обладает свойствами неньютоновской жидкости, поэтому для снижения ее вязкости должна быть обеспечена высокая интенсивность перемешивания (удельная мощность перемешивания не менее 500 Вт/м3). Снижение вязкости исходной пульпы должно приводить к увеличению скорости кристаллизации натроярозита на поверхности твердой фазы, повышению крупности конечного ярозитного кека и его фильтруемости.

Вторая стадия характеризуется пониженным содержанием железа в растворе, что приводит к значительному снижению скорости образования собственных зародышей кристаллов натроярозита. Таким образом, на второй стадии происходят следующие процессы: растворение подложки гидратного железистого кека, кристаллизация натроярозита на поверхности гидратной фазы и рост образовавшихся кристаллов ярозита. Высокая интенсивность перемешивания на данной стадии повышает скорость растворения гидратной подложки, что приводит к повышению содержания железа в растворе и к возможному повышению скорости образования собственных зародышей кристаллов натроярозита. Кроме того, увеличение интенсивности перемешивания снижает вязкость пульпы и повышает скорость кристаллизации натроярозита на поверхности гидратной фазы. Повышение скоростей обоих этих процессов приводит к снижению крупности конечного кека и снижению его фильтруемости. Повышение скорости кристаллизации натроярозита на поверхности гидратной фазы, вызванное увеличением интенсивности перемешивания приводит к повышению степени экранирования гидратной подложки натроярозитом, при этом в конечном кеке повышается остаточное содержание никеля. Таким образом, для получения кристаллического осадка с низким остаточным содержанием никеля необходимо на второй стадии репульпации поддерживать малую интенсивность перемешивания (удельная мощность перемешивания менее 100 Вт/м3).

Оптимальное время репульпации на первой стадии составляет не менее 30 минут, а на второй - 5-7 часов.

Репульпация может быть осуществлена раствором сточных вод, содержащим сульфат и хлорид натрия, например сточными водами, прошедшими нейтрализацию. В этом случае происходит сокращение расхода реагентов.

Способ применим для очистки как первичных железистых кеков, так и кеков, частично отмытых от никеля.

Способ иллюстрируется следующими примерами.

Пример 1. (Опыты по наиболее близкому способу).

Опыты проводили в стакане емкостью 1 литр с механическим перемешиванием. Навеску частично отмытого железистого кека среднего состава (% на сух. вес): железо - 38,5; никель - 5,1; натрий - 0,68 и влажностью 48% репульпировали раствором серной кислоты до содержания твердого 200-250 г/дм3, доводили до величины рН - 1,4-1,5, нагревали до температуры 90-93°С, вводили хлорид калия в количестве 0,12 г/г кека и выдерживали при перемешивании в течение 90 мин. Скорость фильтрации конечной пульпы определялась при фильтрации на вакуумной воронке при разряжении 0,06 МПа и при наращивании слоя кека до 15-17 мм. Условия и результаты опытов приведены в таблице 1.

Пример 2. Опыты проводили в аппарате с механическим перемешиванием емкостью 100 литров. Навеску частично отмытого железистого кека среднего состава (% на сух. вес): железо - 38,5; никель - 5,1; натрий - 0,68 и влажностью 48% распульповывали раствором сернокислого натрия до содержания твердого 200-250 г/дм3, нагревали до температуры 90-95°С, подавали серную кислоту до заданной величины рН, выдерживали при перемешивании в течение 30 мин (I стадия), после чего изменяли интенсивность перемешивания и выдерживали пульпу в течение 5-7 часов (II стадия). Скорость фильтрации конечной пульпы определялась при фильтрации на вакуумной воронке при разряжении 0,06 МПа и при наращивании слоя кека до 15-17 мм. Условия и результаты опытов приведены в таблице 2.

Пример 3. Опыты по репульпации частично отмытого железистого кека проводили в стакане емкостью 1 литр с механическим перемешиванием. Условия проведения опытов аналогичны описанным в примере 2. Скорость фильтрации конечной пульпы определялась при фильтрации на вакуумной воронке при разряжении 0,06 МПа и при наращивании слоя кека до 22-24 мм. Результаты опытов приведены в таблице 3.

Пример 4. Опыт по репульпации первичного железистого кека среднего состава (% на сух. вес): железо - 24,4; никель - 14,1; натрий - 1,9 и влажностью 47% проводили в стакане емкостью 1 литр с механическим перемешиванием. Условия проведения опытов аналогичны описанным в примере 2. Скорость фильтрации конечной пульпы определялась при фильтрации на вакуумной воронке при разряжении 0,06 МПа и при наращивании слоя кека до 15 мм. Результаты опыта приведены в таблице 4.

Пример 5. Опыт по рекристаллизации частично отмытого железистого кека, распульпованного в сточной воде, содержащей сульфат и хлорид натрия. Состав сточной воды (г/дм3): сульфат-ион - 28,7; хлорид-ион - 10,9; натрий - 21,6. Опыт проводили в стакане емкостью 1 литр с механическим перемешиванием. Условия проведения опытов аналогичны описанным в примере 2. Скорость фильтрации конечной пульпы определялась при фильтрации на вакуумной воронке при разряжении 0,06 МПа и при наращивании слоя кека до 15 мм. Результаты опыта приведены в таблице 5.

Таблица 1. (Наиболее близкий способ)
№ опыта Удельная мощность перемешивания, Продолжительность, рН пульпы на I стадии Извлечение Fe в раствор, Содержание Ni в конечном кеке, Скорость фильтрации,
Вт/м3 мин % % м3/м2ч
1 50 90 1,45 5,5 0,35 0,345
2 700 90 1,41 4,5 0,381 0,38
Таблица 2
№ опыта Удельная мощность перемешивания, Вт/м3 Продолжительность II стадии, рН пульпы на I стадии Извлечение Fe в раствор, Содержание Ni в конечном кеке, Скорость фильтрации,
I стадия II стадия ч % % м3/м2ч
3 700 10 7 1,33 5,1 0,141 0,763
4 700 50 7 1,3 4,36 0,166 0,63
5 700 90 7 1,3 5,2 0,15 0,48
6 700 150 7 1,32 6,1 0,145 0,41
7 700 205 7 1,31 9,03 0,129 0,375
8 700 500 7 1,33 6,09 0,182 0,192
9 500 50 7 1,31 4,5 0,152 0,6
10 300 50 7 1,32 4,3 0,153 0,4
11 700 50 7 1,36 5,87 0,143 0,817
12 700 50 7 1,45 2,88 0,204 0,589
13 700 50 5 1,3 5,04 0,181 0,56
14 700 50 3 1,3 6,8 0,181 0,44
Таблица 3
№ опыта Удельная мощность перемешивания, Вт/м3 Продолжительность II стадии рН пульпы на I стадии Извлечение Fe в раствор, Содержание Ni в конечном кеке, Скорость фильтрации,
I стадия II стадия ч % % м3/м2ч
15 700 50 5 1,35 4,5 0,176 0,419
16 700 200 5 1,38 4,5 0,221 0,2
17 300 50 5 1,33 4,3 0,19 0,25
18 700 50 3 1,28 12,0 0,156 0,558
Таблица 4
№ оопыта Удельная мощность перемешивания, Вт/м3 Продолжительность II стадии рН пульпы на I стадии Извлечение Fe в раствор, Содержание Ni в конечном кеке, Скорость фильтрации,
I стадия II стадия ч % % м3/м2ч
19 700 50 5 1,32 5,1 0,18 1,484
Таблица 5
№ опыта Удельная мощность перемешивания, Вт/м3 Продолжительность II стадии рН пульпы на I стадии Извлечение Fe в раствор, Содержание Ni в конечном кеке, Скорость фильтрации,
I стадия II стадия ч % % м3/м2ч
13 700 50 5 1,3 5,04 0,179 0,6

bankpatentov.ru

Способ очистки раствора сульфата никеля от железа

Изобретение относится к электротехнической промышленности и может быть использовано для очистки раствора сульфата никеля NiSO4 от примесей железа при рециклинговом изготовлении гидрата закиси никеля Ni(OH)2 из отработанных щелочных аккумуляторов. При осаждении железа из раствора сульфата никеля кальцинированной содой при значении рН=3,0-3,3 отношение количества железа к нерастворимому никелю в выводимом из процесса осадке составляет 8-10 г железа на 1 г никеля. После первой стадии осаждения железа проводят вторую стадию осаждения при рН 6,3-6,8, при этом осадок железистого кека, полученный на первой стадии очистки, выводится из процесса, а осадок железистого кека, полученный на второй стадии очистки, возвращается в процесс на начальную стадию и вновь переводится в раствор. Техническим результатом изобретения является снижение потерь никеля при очистке раствора сульфата никеля от железа, увеличение степени очистки раствора сульфата никеля, снижение требований к исходному материалу по количественному содержанию железа, а также удешевление способа.

 

Изобретение относится к электротехнической промышленности и может быть использовано для очистки раствора сульфата никеля NiSO4 от примесей железа при рециклинговом изготовлении гидрата закиси никеля Ni(OH)2 из отработанных щелочных аккумуляторов.

Исходный никельсодержащий материал - анодная масса, извлеченная из электродов, содержит некоторое количество железа, как металлического, так и в виде окислов (Fe2O3, FeO). Удаление железа производится тем или иным химическим способом после растворения никеля, содержащегося в анодной массе, в серной кислоте, при этом в раствор переходят и сопутствующие примеси металлов.

Известен способ [1] очистки раствора сульфата никеля от железа при рециклинговом получении гидрата закиси никеля из отработанных щелочных аккумуляторов последовательным переводом ионов Fe2+ в Fe3+ трехвалентным никелем и осаждением железа раствором щелочи плотностью 1,45 г/л при значении рН=3-5 в соответствии со следующими реакциями:

Содержание железа в конечном продукте при данном способе очистки не должно превышать 0,07 мас.% по отношению к никелю.

Наиболее близким к заявляемому является способ [2], при котором перевод ионов двухвалентного железа Fe2+ в ионы Fe3+ осуществляется кислородом воздуха с добавлением перекиси водорода и осаждением железа раствором кальцинированной соды при рН=5,0-5,5 в соответствии со следующими реакциями:

Содержание железа в конечном продукте при данном способе очистки не должно превышать 0,2 мас.% по отношению к никелю.

В качестве побочной реакции в обоих случаях протекает реакция соосаждения никеля:

Очищенный раствор по окончании проведения реакций фильтруется для удаления железистого кека, после чего поступает на дальнейший передел, а железистый кек, содержащий некоторое количество никеля, предварительно подсушенный, направляется на получение ферроникеля.

Следует отметить некоторые существенные недостатки, характерные для указанных способов очистки раствора сульфата никеля от железа:

1. При указанных значениях рН=3,0-5,5 реакции (5), (6) протекают только при наличии в растворе ионов Fe3+, причем количество соосаждаемого никеля прямо пропорционально количеству осаждаемого железа. Поскольку экономически целесообразно минимизировать количество выводимого из раствора никеля, необходимо ограничение по содержанию примесей железа в исходном материале. По данным [1] количество железа по отношению к никелю перед выщелачиванием не должно превышать 3 мас.%, в противном случае материал подвергается дополнительной механической очистке (магнитной сепарации), что ведет к увеличению затрат и потерям никеля на дополнительных операциях.

2. Ограничение по количественному содержанию железа в исходном никельсодержащем материале при данных способах необходимо также и для достижения указанного результата отношения железа к никелю в конечном продукте (не более 0,2 мас.% согласно требованиям ТУ48-3-63-90). Например, если соотношение железа к никелю в исходном материале составит 3-5 мас.%, остаточное железо в очищенном растворе увеличится до 0,1-0,3 мас.% к никелю, что обусловлено нестабильностью ионов Fe3+ в растворе с указанным интервалом рН и протеканием обратной реакции Fe3+ в Fe2+. Поскольку переход ионов железа от трехвалентного к двухвалентному - достаточно длительный процесс, необходимо регламентировать время от окончания окисления Fe2+ до окончания осаждения железа. Тем не менее, процесс стабилизации величины рН щелочью (т.е. непосредственного проведения реакции осаждения) требует временных затрат, чем и обусловлен переход некоторой части железа в Fe2+ и, как следствие, содержание железа в растворе после очистки прямо пропорционально содержанию железа в исходном растворе.

3. Количество соосаждаемого никеля при осаждении железа при изменении рН от 3 до 5 по способу [1] изменяется от 0,1 г никеля на 1 г железа при рН=3 до 2-2,5 г никеля на 1 г железа при рН=5, т.е. потери никеля могут составить до 7,5 мас.% при содержании железа в исходном материале 3 мас.% и проведении процесса при рН=5. При проведении процесса по способу [2] потери никеля при рН=5,0-5,5 составляют до 3,5 г на 1 г выводимого из раствора железа, т.е. до 10-11 мас.% от исходного содержания никеля.

Предлагаемый способ очистки раствора сульфата никеля от примесей железа позволяет устранить указанные недостатки.

Сущность изобретения состоит в том, что процесс осаждения железа из раствора сульфата никеля проводится в две ступени:

- перевод ионов Fe3+ в осадок при рН=3,0-3,3;

- перевод ионов Fe2+ в осадок при рН=6,3-6,8.

В рассматриваемом процессе получение раствора сульфата никеля, очищенного от примесей железа, состоит из следующих стадий:

1. Выщелачивание никеля из исходного материала серной кислотой.

2. Осаждение железа раствором кальцинированной соды при рН=3,0-3,3.

3. Первое фильтрование раствора (получение первого железистого кека).

4. Осаждение железа раствором кальцинированной соды при рН=6,3-6,8.

5. Второе фильтрование раствора (получение второго железистого кека).

6. Использование второго железистого кека в качестве добавки к никельсодержащему материалу, направляемому на выщелачивание никеля (первая стадия процесса).

Полученный по проведению выщелачивания (1 стадия) раствор сульфата никеля содержит некоторое количество ионов Fe2+; Fe3+. Очистка раствора от ионов железа Fe3+ (2 стадия процесса) протекает в соответствии со следующими реакциями:

Реакции проводят при температуре раствора t=70-75°C, при механическом перемешивании и барботаже раствора воздухом для перевода ионов Fe2+ в Fe3+. С этой же целью перед первым фильтрованием в раствор добавляют перекись водорода (Н2O2) из расчета 1 л 25% Н2O2 на 1000 л раствора сульфата никеля при плотности 1,22 г/л. Плотность раствора соды - 1,14 г/л.

Среднее количество удаляемого из раствора железа при проведении данных реакций составляет 85-95%, так же, как и при проведении процессов по технологиям [1], [2]. В рассматриваемом процессе не имеет принципиального значения количество остаточного железа в растворе, что является ограничением по количественному соотношению железа к никелю в исходном материале, поскольку полученный в результате раствор направляется на последующую доочистку от железа. Основным показателем данной стадии является то, что в выводимом из процесса железистом кеке отношение количества железа к нерастворимому никелю в осадке составляет 8-10 г Fe на 1 г Ni. Причем соотношение железа к никелю может быть увеличено до значения 30 г Fe на 1 г Ni при последующей промывке железистого кека на фильтр-прессе горячим слабокислым раствором серной кислоты при значении рН промывного раствора, равном 3,0, и водой.

Процесс перехода ионов Fe2+ в Fe3+ по реакции (3) происходит при кислых значениях рН раствора в присутствии свободного сульфат-иона. При значениях рН, близких к нейтральным и щелочных, в водном растворе сульфата никеля в присутствии кислорода и соды механизм перехода валентности железа от Fe(II) к Fe(III) меняется и может быть описан реакцией, в соответствии с которой проходит операция второй очистки от железа (4 стадия процесса):

Такой переход происходит полнее при более высоких значениях рН. Ограничением значения рН величиной 6,8 является значительное возрастание количества никеля, вступающего в реакцию (6). Однако в указанном интервале рН количество выводимого в осадок из раствора железа по реакции (7) прямо пропорционально длительности процесса. Следовательно, время проведения процесса может быть откорректировано в момент проведения реакции, например, по результатам экспресс-анализа на количественное содержание ионов железа в растворе и, как правило, время проведения реакции не превышает 4-5 часов при содержании железа в исходном материале 7 мас.% по отношению к никелю.

Отношение количества железа к нерастворимому никелю в осадке при проведении данной стадии процесса составляет 1 г Fe на 4-8 г Ni. Данный осадок направляется на первую стадию процесса для совместного растворения в серной кислоте с исходным никельсодержащим материалом.

Общие потери никеля при проведении процессов - 0,1-1%. Возврат на выщелачивание второго железистого кека не приводит к общему накоплению железа в технологической линии, поскольку в обороте участвует железо с валентностью III, которое затем выводится из технологического процесса при первом осаждении. Получаемый в результате раствор сульфата никеля содержит 0,01-0,1 мас.% железа по отношению к никелю, при содержании железа в исходном материале, направляемом на выщелачивание, до 7 мас.% по отношению к никелю.

Техническим результатом изобретения является:

- применение относительно недорогого компонента (кальцинированной соды) для перевода железа в осадок;

- снижение потерь никеля при очистке раствора сульфата никеля от железа;

- увеличение степени очистки раствора сульфата никеля;

- снижение требований к исходному материалу по количественному содержанию железа.

Список литературы, принятой во внимание:

1. Патент № 2178931, Кл. 7 Н01М 4/26, Н01М 4/52, 2000 г.

2. Извлечение никеля из отработанных щелочных аккумуляторов, отчет НИ-724, Минцветмет СССР, НИИ Гипроникель, Ленинград, 1966 г.

Способ очистки раствора сульфата никеля от железа раствором кальцинированной соды, отличающийся тем, что осаждение железа проводят в две стадии, при значениях рН раствора на первой стадии осаждения 3,0-3,3 и на второй стадии осаждения 6,3-6,8, при этом осадок железистого кека, получаемый на первой стадии очистки, выводится из процесса, а осадок железистого кека, получаемый на второй стадии очистки, возвращается в процесс на начальную стадию и вновь переводится в раствор.

www.findpatent.ru

Способ пирометаллургической переработки кеков от очистки сточных вод

 

Изобретение относится к металлургии цветных металлов и может быть использовано при переработке никель- и кобальтсодержащих промпродуктов. Цель изобретения - повышение извлечения цветных металлов и улучшение технико-экономических показателей производства. Кеки от очистки сточных вод, содержащие цветные металлы, подвергают переработке обжигом в печи кипящего слоя совместно с сульфидным никелевым концентратом с последующим восстановлением и плавкой огарка на анодный никель. Содержание пека в смеси составляет 1 - 5 мас. % никеля. 2 табл.

Изобретение относится к металлургии цветных металлов и может быть использовано на металлургических предприятиях, перерабатывающих медно-никелевые сульфидные руды.

Цель изобретения - повышение извлечения цветных металлов и улучшение технико-экономических показателей производства.

Пульпа или кек от очистки сточных вод в количестве 1-5 мас. % сульфидного никелевого концентрата, полученного от флотационного разделения файнштейна, обжигается в печи кипящего слоя с последующим восстановлением огарка и его плавкой на анодный никель.

Расход кека, вводимого в процесс обжига в количестве 1-5 мас. % сульфидного никелевого концентрата, является оптимальным, так как при количествах, меньших 1 мас. % , не наблюдается существенного увеличения извлечения цветных металлов и стабильности работы печи кипящего слоя, а при количествах, больших 5 мас. % , не наблюдается дальнейший рост повышения извлечения цветных металлов и, кроме того, в анодный никель вносится с кеками большое количество загрязняющих примесей, что приводит к существенному увеличению расходов на реагенты для очистки расплавов на последующей стадии анодной плавки закиси никеля, а также к увеличению выхода шлака.

Согласно данному способу предлагается кеки перерабатывать в печах кипящего слоя обжига никелевого концентрата с подачей их в узел приема пульповых оборотов. При обжиге гидроокисные соединения кальция и магния, присутствующие в пульпе, превращаются в окислы, которые при анодной плавке переходят в шлак.

Предлагаемый способ позволяет повысить извлечение цветных металлов за счет исключения потерь; дополнительно вовлечь в переработку железистые кеки за счет снятия с загрузки в руднотермические печи окатышей известковых пульп; повысить извлечение кобальта в анодный никель за счет повышения содержания кальция в шлаке.

При переработке известково-содовых кеков от очистки сточных вод, содержащих, мас. % : никель 5-20; медь 0,5-1; кобальт 0,1-0,3; железо 0,1-0,3; цинк 0,002-0,005; свинец 0,001-0,005; мышьяк 0,001-0,005; кальций 10-20; магний 5-10; в головке процесс руднотермической электропечи плавильного цеха вместе с другими оборотными материалами, гидроокисные и карбонатные соединения кеков разлагаются в виде окислов и переходят в отвальный шлак, где используются с низкой эффективностью. Переработка кеков по существующей технологии в голове процесса приводит к дополнительным потерям цветных металлов, увеличивает объемы незавершенного производства.

При введении кеков на стадию обжига никелевого сульфидного концентрата от флотации файнштейна гидроокисные и карбонатные соединения разлагаются с образованием окислов, которые взаимодействуют с компонентами никелевого концентрата; натрий повышает химическую активность закиси никеля и снижает явление ферритообразования; кальций способствует более полному обессериванию никеля, а в целом присутствие окислов от разложения перерабатываемых кеков снижает вероятность спекания сульфидных частиц никелевого концентрата при его обжиге в печи кипящего слоя. При анодной плавке окислы, вводимые с кеками, улучшают минералогический состав шлаков, способствуют более полному переходу железа в шлак и, наоборот, их обеднению по кобальту.

Таким образом, предлагаемый способ позволяет повысить извлечение цветных металлов за счет исключения потерь в плавильном цехе и сокращения многооперационности процесса, уменьшить расход щелочи за счет нейтрализации кислых оборотных растворов карбонатными соединениями кеков, снизить вероятность спекания частиц в печи кипящего слоя, повысить химическую активность никелевых порошков за счет присутствия натрия, вносимого с кеками, повысить извлечение кобальта в анодный никель за счет увеличения содержания кальция в шлаках.

Состав кека, содержащего 30 мас. % влаги, приведен в табл. 1.

Проведенные испытания показали, что реализация предлагаемого способа позволяет повысить извлечение цветных металлов и улучшить стабильность кипения слоя, а также повысить активность никелевых порошков за счет снижения содержания серы и явления их спекания. (56) Технологическая инструкция отделения спекания шихты плавильного цеха комбината "Североникель", рег. N 48-0404-03-01-86.

Технологическая инструкция "Электроплавка рудных шихт" комбината "Североникель", Рег. N ТИ 48-0404-03-02-87.

СПОСОБ ПИРОМЕТАЛЛУРГИЧЕСКОЙ ПЕРЕРАБОТКИ КЕКОВ ОТ ОЧИСТКИ СТОЧНЫХ ВОД, содержащих цветные металлы, и сульфидных никелевых концентратов, включающий их обжиг с получением огарка, отличающийся тем, что, с целью повышения извлечения цветных металлов и улучшения технико-экономических показателей, обжиг кеков и концентратов ведут совместно при содержании кеков в шихте 1 - 5 мас. % никелевого концентрата, огарок восстанавливают и плавят на анодный никель.

Рисунок 1

Извещение опубликовано: 20.11.2000        

www.findpatent.ru

Способ получения никеля и концентрата драгоценных металлов из медно-никелевого файнштейна

Изобретение относится к способу получения никеля и концентрата драгоценных металлов из медно-никелевого файнштейна. Способ включает выщелачивание хлоридным раствором при подаче хлора, очистку раствора от меди с получением медного сульфидного кека, выделение концентрата драгоценных металлов и электроэкстракцию никеля из раствора. Перед выщелачиванием файнштейн разделяют на сульфидную и металлизированнуюю фракции. Выщелачиванию хлоридным раствором при подаче хлора подвергают сульфидную фракцию. Очистку раствора от меди с выводом ее в медный сульфидный кек осуществляют путем добавления получаемой при разделении файнштейна металлизированной фракции в полученную при выщелачивании пульпу. После очистки раствора от меди осуществляют очистку раствора от железа, цинка и кобальта. Медный сульфидный кек обжигают, полученный огарок выщелачивают. Раствор отправляют на электроэкстракцию меди, а из остатка флотацией выделяют концентрат драгоценных металлов и камерный продукт. Технический результат заключается в снижении материальных затрат, эксплуатационных расходов и потерь цветных и драгоценных металлов. 1 з.п. ф-лы, 2 ил.

 

Изобретение относится к области цветной металлургии, в частности к получению катодного никеля и концентрата драгоценных металлов из сульфидного медно-никелевого сырья.

Известен способ производства электролитного никеля из медно-никелевого файнштейна [Ю.В.Баймаков А.И.Журин. Электролиз в гидрометаллургии. - М.: Металлургия, 1977, с.201], включающий флотационное разделение медленно охлажденного и измельченного файнштейна на медный и никелевый концентраты, окислительный обжиг никелевого концентрата, восстановление огарка, плавку на аноды, электролитическое рафинирование и переработку анодного шлама до концентратов драгоценных металлов. Недостатками способа являются значительное количество пирометаллургических переделов, обусловливающее высокие эксплуатационные расходы и потери металлов; высокие эксплуатационные затраты при электролизе с растворимыми анодами, большой объем оборотных продуктов.

Известен способ производства электролитного никеля, включающий флотационное разделение файнштейна на медный и никелевый концентраты, окислительный обжиг никелевого концентрата, восстановление закиси никеля, выщелачивание восстановленной закиси никеля хлоридным раствором при подаче хлора с получением коллектирующего драгоценные металлы остатка, очистку растворов выщелачивания последовательно от железа, меди, кобальта, электроэкстракцию никеля (патент РФ №2303086). Недостатком способа является сохранение большого числа пирометаллургических переделов переработки файнштейна, обусловливающее высокие эксплуатационные расходы и потери металлов.

Известен способ хлорного выщелачивания файнштейна и очистки от меди раствора выщелачивания (патент США №3880653), согласно которому регулированием окислительно-восстановительного потенциала достигается селективный перевод в раствор никеля из медно-никелевого файнштейна. Медь из раствора осаждают в пульпе выщелачивания добавлением свежей порции того же файнштейна. Недостатком способа является невысокое сквозное извлечение никеля в раствор (на уровне 80%) и получение содержащего драгоценные металлы медного сульфидного кека с низким отношением содержаний меди и никеля, определяющим значительный оборот никеля через медное производство и связанные с ним потери и передельные затраты.

Наиболее близким техническим решением является способ селективного выщелачивания никеля из медно-никелевого файнштейна с последующим осаждением меди из раствора выщелачивания путем добавления свежего файнштейна. Способ представлен в вариантах комбинаций последовательных процессов, реализуемых при атмосферном давлении и в автоклавах (патент США №4828809). Автоклавные стадии процессов выполняют при температуре 135-150°С и давлении 4 атм. В результирующих твердых продуктах, коллектирующих драгоценные металлы, содержание меди составляло 54-57%, никеля - 1,1-5,5%, остаточное содержание меди в растворе - 0,05-0,2 г/дм3. Недостатком способа является многостадийность переработки сырья с применением сложного дорогостоящего реакционного оборудования и значительный объем фильтрования пульп.

Задачей настоящего изобретения является снижение материальных затрат, эксплуатационных расходов и потерь при производстве электролитного никеля и концентрата драгоценных металлов за счет выделения и раздельной переработки сульфидной и металлизированной фракций файнштейна.

Технический результат достигается тем, что в предлагаемом способе получения никеля и концентрата драгоценных металлов, включающем выщелачивание хлоридным раствором при подаче хлора, осаждение меди из раствора с получением медного сульфидного кека, выделение концентрата драгоценных металлов, электроэкстракцию никеля из раствора, переработку медного сульфидного кека в медном производстве, согласно изобретению перед выщелачиванием файнштейн разделяют на сульфидную и металлизированную фракции, выщелачиванию хлоридным раствором при подаче хлора подвергают сульфидную фракцию, осаждение меди с выводом ее в медный сульфидный кек осуществляют путем добавления получаемой при разделении файнштейна металлизированной фракции в полученную при выщелачивании пульпу, медный сульфидный кек обжигают, полученный огарок выщелачивают, раствор отправляют на электроэкстракцию меди, а из остатка флотацией выделяют концентрат драгоценных металлов и камерный продукт, перед электроэкстракцией никеля осуществляют очистку раствора от железа, цинка, меди и кобальта.

Полученный при флотации камерный продукт восстанавливают, подвергают магнитной сепарации, и магнитную фракцию возвращают на очистку раствора от меди в качестве восстановителя.

Последовательность переделов технологической схемы получения никеля и концентрата драгоценных металлов из медно-никелевого файнштейна согласно заявляемому способу представлена на фиг.1.

На стадии растворения в раствор переходит значительная доля содержащегося в сульфидной фракции никеля и часть меди, а связанная с ними сульфидная сера окисляется до серы элементарной. На стадии осаждения меди достигается глубокое извлечение в раствор никеля из металлизированных продуктов, получаемых при производстве и разделении файнштейна, с восстановлением элементарной серы и осаждением меди из раствора в сульфиды.

В качестве металлизированных продуктов могут быть использованы металлизированная фракция, выделяемая при разделении файнштейна, и/или металлизированные продукты (файнштейн, штейн), получаемые при переработке сульфидных руд.

Суммарные окислительно-восстановительные реакции, протекающие при растворении, обобщенно описываются следующими уравнениями:

Суммарные окислительно-восстановительные реакции, протекающие при осаждении меди, обобщенно описываются следующими уравнениями:

Окислительно-восстановительный потенциал пульпы, задаваемый соотношением скоростей подачи хлора и сульфидной фракции файнштейна, выбирают таким, чтобы обеспечить максимально полное протекание реакций (1) и (2) и ограничение растворения сульфида меди частичным протеканием реакции (3) с минимальным дальнейшим окислением образовавшегося ковеллина по реакции (4). Тем самым сокращают расход осадителя - металлизированной фракции файнштейна - на очистку от меди.

Пульпу выщелачивания без разделения фаз направляют на осаждение меди. В качестве реагентов в процессе участвуют образовавшаяся в процессе выщелачивания сера и металлизированный осадитель (металлизированная фракция файнштейна). Ионы Cu2+ восстанавливаются до Cu+ по реакции (5), и затем переводятся в сульфид по реакции (6). В полученном кеке коллектируется остаток растворения сульфидной фракции файнштейна, содержащий невскрытые сульфиды цветных металлов и железа и благородные металлы. Кроме того, в кек осаждаются перешедшие в раствор благородные металлы, что делает передел осаждения меди барьером для потерь благородных металлов на переделах очистки раствора и электроэкстракции.

Медный кек после отмывки отправляют в медное производство, где подвергают окислительному обжигу, в ходе которого сульфиды металлов переводят в оксиды, а серу сульфидов и элементарную серу - в сернистый газ, направляемый на производство серной кислоты. Огарок обжига выщелачивают в оборотном растворе электроэкстракции меди. Раствор выщелачивания направляют на электроэкстракцию меди, а остаток - на флотационное выделение концентрата благородных металлов. Тем самым организуют канал вывода благородных металлов из схемы. Камерный продукт подвергают восстановительному обжигу. После магнитной сепарации, в результате которой из схемы выводят балластные составляющие, магнитную фракцию огарка восстановительного обжига возвращают в никелевое производство и вместе с магнитной фракцией файнштейна используют для очистки от меди раствора выщелачивания.

Такая организация процесса исключает необходимость обеспечения условий максимальной селективности извлечения в раствор никеля по отношению к меди на переделе выщелачивания хлоридным раствором при подаче хлора и максимальной глубины срабатывания осадителя на переделе очистки от меди. Соответственно, процессы растворения и осаждения реализуют без применения повышенного давления в относительно недорогом оборудовании. Регулированием потенциала процесса достигают обеспечения соотношения перехода меди и никеля в раствор, соответствующего балансу меди и металлов-осадителей на переделе осаждения меди. При снижении потенциала выщелачивания перевод меди и никеля в раствор снижается и образуется избыток металлического осадителя (магнитной фракции огарка восстановительного обжига), который может быть запасен либо растворен на переделе выщелачивания. При повышении потенциала выщелачивания перевод меди и никеля в раствор возрастает, и металлический осадитель оказывается в дефиците, покрываемом из ранее организованного запаса.

Осаждение меди происходит с участием не только никеля (реакции (5), (6)), но также кобальта и железа, находящихся в металлическом сплаве в составе металлизированной фракции файнштейна и в магнитной фракции огарка восстановительного обжига.

Перед электроэкстракцией никеля полученный после осаждения меди в медный сульфидный кек раствор подвергают гидролитической очистке от железа и кобальта и экстракционной очистке от меди и цинка.

В приведенных ниже примерах описаны варианты реализации изобретения.

В опытах выщелачивания хлоридным раствором при подаче хлора использовали немагнитную (сульфидную) фракцию от разделения файнштейна состава, %: Ni - 43,64; Сu - 27,67; Со - 1,14; Fe - 2,93; S - 24,23 фракции <0,071 мм.

В опытах очистки от меди - магнитную фракцию состава, %: Ni -56,43; Сu - 26,02; Со - 1,41; Fe - 3,43; S - 12,18 фракции 0,2 мм.

В сравнительном опыте 5 выщелачивание хлоридным раствором при подаче хлора и очистку от меди вели с использованием измельченного файнштейна состава, %: Ni - 45,36; Сu - 27,45; Со - 1,18; Fe - 3,00; S - 22,61 без магнитной сепарации. В опыте 12 в качестве осадителя использовали металлизированный файнштейн состава, %: Ni - 49,16; Сu - 36,95; Со - 0,24; Fe - 0,34; S - 12,2.

Пример 1

1,0 кг сульфидной фракции медно-никелевого файнштейна распульповали в 4,0 л хлоридного раствора состава, г/дм3: Ni - 66,2; Na - 19,6; НСl - 1,0 при температуре 95° С, и в пульпу начали подавать хлор. Потенциал раствора, снизившийся после загрузки твердого до уровня +100-+150 мВ относительно хлорсеребряного электрода сравнения, в течение 20 минут поднялся до +430 мВ. В ходе опыта регулированием подачи хлора потенциал удерживали на этом уровне. Продолжительность опыта составляла 3 часа. По завершении выщелачивания пульпа была расфильтрована. Выход остатка выщелачивания составил 36,5%, содержание Ni 5,6%, Сu 25,4%, S общей 64,6%, S элементарной 47%. Извлечение в раствор составило: Ni - 95,3%; Сu - 66, 5%. Содержания в растворе выщелачивания, г/дм3: Ni - 170, Сu - 46.

Пример 2

В примере, аналогичном примеру 1, выщелачивание выполняли при потенциале 400 мВ относительно хлорсеребряного электрода сравнения. Выход остатка выщелачивания составил 48,7%, содержание Ni - 10,0%, Сu - 38,2%, S общей - 48,5%, S элементарной - 22,3%. Извлечение в раствор составило: Ni - 88,8%; Сu - 32,7%, Содержания в растворе выщелачивания, г/дм3: Ni-163, Сu - 22,6.

Пример 3

В примере, аналогичном примеру 1, выщелачивание выполняли при потенциале 375 мВ относительно хлорсеребряного электрода сравнения. Выход остатка выщелачивания составил 63,6%, содержание Ni - 24,4%, Сu - 35,9%, S общей - 37,1%, S элементарной - 4,6%. Извлечение в раствор составило: Ni - 64,4%; Сu - 17,4%. Содержания в растворе выщелачивания, г/дм3: Ni - 136, Сu - 12.

Пример 4

В примере, аналогичном примеру 1, выщелачивание выполняли при потенциале 470 мВ относительно хлорсеребряного электрода сравнения. Выход остатка выщелачивания составил 24,2%, содержание Ni - 4,0%, Сu - 1,4%, S общей - 92,1%, S элементарной - 88,8%. Извлечение в раствор составило: Ni - 97,8%; Сu - 98,8%. Содержания в растворе выщелачивания, г/дм3: Ni - 173, Сu - 69.

Результаты определения извлечения никеля и меди в раствор в зависимости от потенциала выщелачивания приведены на фиг.2. Из данных примеров следует, что значимая селективность выщелачивания никеля по отношению к меди сохраняется до потенциала 430 мВ по хлорсеребряному электроду сравнения, а при потенциале ниже 400 мВ значительно снижается извлечение никеля в раствор, что определяет предпочтительный диапазон потенциалов реализации процесса выщелачивания.

Пример 5

В охлажденную до 80° С пульпу выщелачивания измельченного не сепарированного файнштейна, полученную в опыте с параметрами по примеру 1, при перемешивании ввели 750 г (4,1 г/г меди в растворе) того же не сепарированного измельченного файнштейна. Продолжительность опыта составляла 30 минут. По завершении выщелачивания пульпа была расфильтрована. Выход медного кека составил 105% от суммы масс твердого в пульпе выщелачивания и металлизированной фракции, содержание в кеке Ni - 20,1%, Сu - 41,9%, S общей - 34,2%, S элементарной - 6,1%. Извлечение в раствор из файнштейна на очистке от меди Ni - 36,4,8%; Со - 8,0%, Fe - 7,5%, суммарное извлечение на выщелачивании хлоридным раствором при подаче хлора и очистке от меди составило: Ni - 71,0%; Со - 50,2%; Fe -53,5%. Остаточное содержание меди в растворе выщелачивания 0,11 г/дм3.

Пример 6

В охлажденную до 80° С пульпу выщелачивания сульфидной фракции медно-никелевого файнштейна, полученную в соответствии с примером 1, при перемешивании ввели 212 г (1,15 г/г меди в растворе) металлизированной фракции файнштейна. Продолжительность опыта составляла 30 минут. По завершении выщелачивания пульпа была расфильтрована. Выход медного кека составил 116% от суммы масс твердого в пульпе выщелачивания и металлизированной фракции, содержание в кеке Ni - 8,5%, Сu - 49,5%, S общей - 39,1%, S элементарной - 11,7%. Извлечение в раствор из металлизированной фракции файнштейна составило: Ni -69,8%; Со - 70,0%; Fe - 74,5%. Остаточное содержание меди в растворе выщелачивания 0,07 г/дм3.

Из примеров 5, 6 следует, что использование не разделенного на магнитную и немагнитную (сульфидную) фракции файнштейна на переделах выщелачивания хлоридным раствором при подаче хлора и очистки от меди определяет получение медного кека с отношением содержаний меди и никеля, равным 2,1, тогда как магнитная сепарация и использование металлизированной фракции на переделе очистки от меди определяет повышение этого соотношения до 5,8.

Пример 7

В охлажденную до 80° С пульпу выщелачивания, полученную в соответствии с примером 1, при перемешивании ввели 330 г (1,79 г/г меди в растворе) металлизированной фракции файнштейна. Продолжительность опыта составляла 30 минут. По завершении выщелачивания пульпа была расфильтрована. Выход медного кека составил 113,5% от суммы масс твердого в пульпе выщелачивания и металлизированной фракции, содержание в кеке Ni - 16,2%, Сu - 46,0%, S общей - 35,0%, S элементарной - 10,0%. Извлечение в раствор из металлизированной фракции файнштейна составило: Ni - 42,3%; Со - 70.0%; Fe - 74.5%. Остаточное содержание меди в растворе выщелачивания 0,07 г/дм3.

Пример 8

В охлажденную до 80° С пульпу выщелачивания, полученную в соответствии с примером 1, при перемешивании ввели 184 г (1,0 г/г меди в растворе) металлизированной фракции файнштейна. Продолжительность опыта составляла 30 минут. По завершении выщелачивания пульпа была расфильтрована. Выход медного кека составил 114% от суммы масс твердого в пульпе выщелачивания и металлизированной фракции, содержание в кеке Ni - 8,1%, Сu - 47,8%, S общей - 41,1%, S элементарной - 14,4%. Извлечение в раствор из металлизированной фракции файнштейна составило: Ni - 70,5%; Со - 70.0%; Fe - 74.5%. Остаточное содержание меди в растворе выщелачивания 6,1 г/дм.

Пример 9

В охлажденную до 80° С пульпу выщелачивания, полученную в соответствии с примером 4, при перемешивании ввели 535 г (1,95 г/г меди в растворе) металлизированной фракции файнштейна. Продолжительность опыта составляла 30 минут. По завершении выщелачивания пульпа была расфильтрована. Выход медного кека составил 104,5% от суммы масс твердого в пульпе выщелачивания и металлизированной фракции, содержание в кеке Ni - 11,3%, Сu - 51,1%, S общей - 35,9%, S элементарной - 9,7%. Извлечение в раствор из металлизированной фракции файнштейна составило: Ni - 72,6%; Со - 70,0%; Fe - 74,5%. Остаточное содержание меди в растворе выщелачивания 0,12 г/дм3.

Из примеров 7-9 следует, что перерасход осадителя (металлизированной фракции файнштейна) (пример 7) не повышает глубину очистки раствора от меди, но обусловливает ухудшение качества медного кека (повышенное содержание никеля). Недостаток осадителя (пример 8) не позволяет достичь требуемой глубины очистки раствора от меди. Выщелачивание сульфидной фракции файнштейна при высоком потенциале (пример 9) определяет глубокое извлечение меди в раствор и повышенное образование кислоты при окислении сульфидной серы до сульфатной, что обусловливает большой расход металлизированной фракции файнштейна.

Пример 10

1,0 кг промытого и высушенного медного кека, полученного в опыте с параметрами, соответствующими опытам по примерам 1 и 5, обожгли в воздушной атмосфере при температуре 950° С в течение 3 часов. Выход огарка составил 75,7% от массы кека. 700 г огарка выщелочили в 7 л медного раствора состава, г/дм3: Сu - 35, Ni - 15, h3SO4 - 107 при температуре 70° С в течение 1 часа. Извлечение в раствор составило: Сu - 98%; Ni - 27%; Со - 27%; Fe - 2,7%. Выход остатка выщелачивания составил 16,4%. Остаток выщелачивания затем был подвергнут флотации с флотореагентом - бутиловым ксантогенатом - с получением флотоконцентрата благородных металлов (выход по массе составил 12,3%) и камерного продукта (выход по массе составил 87,7%). Извлечение благородных металлов во флотоконцентрат составило: Pt - 85%; Pd - 90%; Rh - 60%; Ru - 50%; Ir - 50%; Au - 80%; Ag - 90%. Извлечение в камерный продукт составило: Сu 80%; Ni - 97%; Со - 97%; Fe - 98%. Камерный продукт восстановили при температуре 800° С с использованием угля в качестве восстановителя, и огарок восстановительного обжига (выход 86,4%) подвергли магнитной сепарации для отделения не прореагировавшего угля и балластных составляющих. Выход магнитной фракции составил 81%, состав: Сu 2,0%, Ni - 56,6%; Со - 8,8%, Fe - 23,9%, S - 0,5%, O2 - 5,1%. Степень металлизации составила: Ni - 90%; Co - 80%; Fe - 70%.

Пример 11

В охлажденную до 80° С пульпу выщелачивания, выполненного аналогично примеру 1, при перемешивании ввели 130 г (0,7 г/г меди в растворе) металлизированной фракции файнштейна и 46 г (0,25 г/г меди в растворе) магнитной фракции огарка восстановительного обжига, полученного в опыте примера 10. Продолжительность опыта 30 минут. По завершении выщелачивания пульпа была расфильтрована. Выход медного кека составил 117% от суммы масс твердого в пульпе выщелачивания и металлизированной фракции, содержание в кеке Ni - 7,0%, Сu - 49,1%, S общей - 40,0%, S элементарной - 12,4%. Извлечение в раствор из металлизированной фракции файнштейна составило: Ni - 75,7%; Со - 77,0%; Fe - 71,2%. Остаточное содержание меди в растворе выщелачивания 0,10 г/дм3. Кроме того, раствор содержал железо - 9,2 г/дм3, кобальт - 3,5 г/дм3, цинк - 0,012 г/дм3 и свинец - 0,032 г/дм3. Очистку раствора от железа выполняли продувкой воздухом с нейтрализацией кислоты гидролиза карбонатом никеля, от цинка и меди - экстракцией триоктиламином, от кобальта и свинца - хлором и карбонатом никеля с переводом кобальта в кобальтовый кек. Очищенный раствор содержал, г/дм3: никеля - 90, меди - 0,005, железа - 0,0008, кобальта - 0,010, цинка - 0,00024, свинца - 0,00015 и по содержанию примесей обеспечивал возможность получения электроэкстракцией высокомарочного никеля.

Пример 12

В охлажденную до 80° С пульпу выщелачивания по примеру 1 при перемешивании ввели 365 г (2,0 г/г меди в растворе) металлизированного файнштейна. Продолжительность опыта 30 минут. По завершении выщелачивания пульпа была расфильтрована. Выход медного кека составил 108% от суммы масс твердого в пульпе выщелачивания и металлизированной фракции, содержание в кеке Ni 9,9%, Сu 53,3%, S общей 34,7%, S элементарной 7,9%. Извлечение в раствор из металлизированного файнштейна составило: Ni - 69,7%; Со - 67,0%; Fe - 62,2%. Остаточное содержание меди в растворе выщелачивания 0,08 г/дм3.

1. Способ получения никеля и концентрата драгоценных металлов из медно-никелевого файнштейна, включающий выщелачивание хлоридным раствором при подаче хлора, осаждение меди из раствора с получением медного сульфидного кека, выделение концентрата драгоценных металлов и электроэкстракцию никеля из раствора, отличающийся тем, что перед выщелачиванием файнштейн разделяют на сульфидную и металлизированнуюю фракции, выщелачиванию хлоридным раствором при подаче хлора подвергают сульфидную фракцию, осаждение меди с выводом ее в медный сульфидный кек осуществляют путем добавления получаемой при разделении файнштейна металлизированной фракции в полученную при выщелачивании пульпу, медный сульфидный кек обжигают, полученный огарок выщелачивают, раствор отправляют на электроэкстракцию меди, а из остатка флотацией выделяют концентрат драгоценных металлов и камерный продукт, перед электроэкстракцией никеля осуществляют очистку раствора от железа, цинка, меди и кобальта.

2. Способ по п.1, отличающийся тем, что полученный при флотации камерный продукт восстанавливают, подвергают магнитной сепарации и магнитную фракцию возвращают на осаждение меди.

www.findpatent.ru

способ очистки гидролитических железистых кеков от никеля - патент РФ 2320736

Изобретение относится к области переработки никельсодержащих полупродуктов - железистых кеков, получаемых в процессе гидрометаллургического производства никеля. Способ включает репульпацию кеков кислотным раствором, содержащим соли щелочных металлов, при повышенной температуре и при поддержании рН пульпы 1,2-1,6. Репульпацию проводят в реакторе с механическим перемешиванием при удельной мощности перемешивания на первой стадии в пределах 500-1000 Вт/м 3, а на второй - в пределах 5-100 Вт/м3 . Техническим результатом является более глубокая очистка кеков от никеля, улучшение фильтруемости получаемых продуктов. 3 з.п. ф-лы, 5 табл.

Изобретение относится к области цветной металлургии, в частности к гидрометаллургической переработке промышленных продуктов электролитического производства никеля.

Известен способ очистки гидролитических железистых кеков от никеля и кобальта, включающий кислую репульпацию при повышенной температуре [Орехов М.А., Патюков Г.М., Халимова А.К. Изучение состава отвального железистого кека и некоторых закономерностей его формирования. «Цветные металлы», №9, 1971, с.50-54].

По известному способу часть пульпы железокобальтового кека растворяют в избытке кислоты, затем раствор нагревают до 85-90°С, доокисляют закисное железо пульпой гидроокисей, нейтрализуют кислоту содой до рН=3,3 с осаждением железа и последующим перемешиванием («выкруткой») осадка вместе с затравкой, продолжительность репульпации 6-11 ч. Получают хорошо фильтруемые основные соли железа. Основные недостатки способа - значительная продолжительность процесса и необходимость оборота в виде затравки хорошо фильтрующихся осадков.

Наиболее близким к предлагаемому является способ очистки гидролитических железистых кеков от никеля и кобальта (А.с. 827576 (СССР) / Гутин В.А., Соболь С.И., Фраш Т.М. и др. БИ, №17, 1981, с.103), по которому пульпу первичного железистого кека, содержащую 160-300 г/л твердого, нагревают до температуры 85-95°С, преимущественно 90-93°С, подкисляют до заданной величины рН и вводят хлористый калий в количестве 0,06-0,2 т/т кека. Величина рН пульпы 1,3-1,7 является оптимальной, при превышении ее заметно повышается остаточное содержание цветных металлов в кеке, при рН менее 1,3 увеличивается переход железа в раствор. Постоянную величину рН поддерживают добавками небольших количеств соды или поташа. В указанных условиях достигается перекристаллизация железистого кека с получением легко фильтруемого осадка, содержащего 0,4-0,6% никеля.

К недостаткам способа следует отнести то, что способ обеспечивает остаточное содержание никеля в железистом кеке на уровне 0,4-0,6%, что слишком высоко для кеков отвального качества, и низкую фильтруемость кеков.

Задачей изобретения является очистка гидролитического железистого кека от никеля. Техническим результатом, достигаемым при этом, является получение остаточного содержания никеля в кеке на уровне 0,1-0,2%, улучшение фильтруемости полученного кека.

Заявленный технический результат достигается тем, что в способе очистки гидролитических железистых кеков от никеля, включающем репульпацию кислотным раствором, содержащим соли щелочных металлов, при повышенной температуре и поддержании рН пульпы 1,2-1,6, согласно изобретению, репульпацию проводят в две стадии в реакторах с механическим перемешиванием, поддерживая удельную мощность перемешивания на первой стадии 500-1000 Вт/м3, а на второй 5-100 Вт/м3.

Преимущественной величиной рН репульпации является 1,3-1,4.

Время репульпации на первой стадии составляет не менее 30 минут, а на второй 5-7 часов.

Кроме того, с целью снижения расходов реагентов процесс репульпации железистых кеков может осуществляться в растворе сточных вод, содержащих сульфат и хлорид натрия.

Величина рН пульпы 1,2-1,6 (преимущественно 1,3-1,4) является оптимальной, при этом остаточное содержание никеля в железистом кеке составляет 0,1-0,2%, степень перехода железа в раствор не превышает 4-6%. В указанных условиях репульпации происходит превращение аморфных тонкодисперсных хлопьевидных агрегатов железистого кека в хорошо раскристаллизованный легко фильтруемый осадок, основу которого составляет ярозит натрия. В ходе перекристаллизации одновременно происходит несколько процессов: растворение гидратного железистого кека, образование зародышей кристаллов натроярозита, кристаллизация натроярозита на собственных зародышах и кристаллизация натроярозита на поверхности гидратной фазы. Технические результаты, заявленные в изобретении (остаточное содержание никеля в кеке на уровне 0,1-0,2%, улучшение фильтруемости полученного кека), достигаются при поддержании определенного соотношения скоростей вышеуказанных процессов, обеспечивающего получение крупнокристаллического легко фильтруемого осадка. Необходимое соотношение скоростей этих процессов достигается при поддержании определенной интенсивности перемешивания в ходе репульпации железистого кека.

Для получения крупнокристаллического осадка необходимо на первой стадии репульпации снижать скорость образования зародышей натроярозита и повышать скорость кристаллизации его на подложке. На первой стадии репульпации происходит интенсивное растворение части гидратного железистого кека и, следовательно, повышается содержание железа в растворе. При этом увеличивается скорость образования зародышей натроярозита, повышению скорости кристаллизации его на подложке препятствуют диффузионные ограничения, связанные с высокой вязкостью исходной пульпы железистого кека. Исходная пульпа обладает свойствами неньютоновской жидкости, поэтому для снижения ее вязкости должна быть обеспечена высокая интенсивность перемешивания (удельная мощность перемешивания не менее 500 Вт/м 3). Снижение вязкости исходной пульпы должно приводить к увеличению скорости кристаллизации натроярозита на поверхности твердой фазы, повышению крупности конечного ярозитного кека и его фильтруемости.

Вторая стадия характеризуется пониженным содержанием железа в растворе, что приводит к значительному снижению скорости образования собственных зародышей кристаллов натроярозита. Таким образом, на второй стадии происходят следующие процессы: растворение подложки гидратного железистого кека, кристаллизация натроярозита на поверхности гидратной фазы и рост образовавшихся кристаллов ярозита. Высокая интенсивность перемешивания на данной стадии повышает скорость растворения гидратной подложки, что приводит к повышению содержания железа в растворе и к возможному повышению скорости образования собственных зародышей кристаллов натроярозита. Кроме того, увеличение интенсивности перемешивания снижает вязкость пульпы и повышает скорость кристаллизации натроярозита на поверхности гидратной фазы. Повышение скоростей обоих этих процессов приводит к снижению крупности конечного кека и снижению его фильтруемости. Повышение скорости кристаллизации натроярозита на поверхности гидратной фазы, вызванное увеличением интенсивности перемешивания приводит к повышению степени экранирования гидратной подложки натроярозитом, при этом в конечном кеке повышается остаточное содержание никеля. Таким образом, для получения кристаллического осадка с низким остаточным содержанием никеля необходимо на второй стадии репульпации поддерживать малую интенсивность перемешивания (удельная мощность перемешивания менее 100 Вт/м 3).

Оптимальное время репульпации на первой стадии составляет не менее 30 минут, а на второй - 5-7 часов.

Репульпация может быть осуществлена раствором сточных вод, содержащим сульфат и хлорид натрия, например сточными водами, прошедшими нейтрализацию. В этом случае происходит сокращение расхода реагентов.

Способ применим для очистки как первичных железистых кеков, так и кеков, частично отмытых от никеля.

Способ иллюстрируется следующими примерами.

Пример 1. (Опыты по наиболее близкому способу).

Опыты проводили в стакане емкостью 1 литр с механическим перемешиванием. Навеску частично отмытого железистого кека среднего состава (% на сух. вес): железо - 38,5; никель - 5,1; натрий - 0,68 и влажностью 48% репульпировали раствором серной кислоты до содержания твердого 200-250 г/дм3, доводили до величины рН - 1,4-1,5, нагревали до температуры 90-93°С, вводили хлорид калия в количестве 0,12 г/г кека и выдерживали при перемешивании в течение 90 мин. Скорость фильтрации конечной пульпы определялась при фильтрации на вакуумной воронке при разряжении 0,06 МПа и при наращивании слоя кека до 15-17 мм. Условия и результаты опытов приведены в таблице 1.

Пример 2. Опыты проводили в аппарате с механическим перемешиванием емкостью 100 литров. Навеску частично отмытого железистого кека среднего состава (% на сух. вес): железо - 38,5; никель - 5,1; натрий - 0,68 и влажностью 48% распульповывали раствором сернокислого натрия до содержания твердого 200-250 г/дм3, нагревали до температуры 90-95°С, подавали серную кислоту до заданной величины рН, выдерживали при перемешивании в течение 30 мин (I стадия), после чего изменяли интенсивность перемешивания и выдерживали пульпу в течение 5-7 часов (II стадия). Скорость фильтрации конечной пульпы определялась при фильтрации на вакуумной воронке при разряжении 0,06 МПа и при наращивании слоя кека до 15-17 мм. Условия и результаты опытов приведены в таблице 2.

Пример 3. Опыты по репульпации частично отмытого железистого кека проводили в стакане емкостью 1 литр с механическим перемешиванием. Условия проведения опытов аналогичны описанным в примере 2. Скорость фильтрации конечной пульпы определялась при фильтрации на вакуумной воронке при разряжении 0,06 МПа и при наращивании слоя кека до 22-24 мм. Результаты опытов приведены в таблице 3.

Пример 4. Опыт по репульпации первичного железистого кека среднего состава (% на сух. вес): железо - 24,4; никель - 14,1; натрий - 1,9 и влажностью 47% проводили в стакане емкостью 1 литр с механическим перемешиванием. Условия проведения опытов аналогичны описанным в примере 2. Скорость фильтрации конечной пульпы определялась при фильтрации на вакуумной воронке при разряжении 0,06 МПа и при наращивании слоя кека до 15 мм. Результаты опыта приведены в таблице 4.

Пример 5. Опыт по рекристаллизации частично отмытого железистого кека, распульпованного в сточной воде, содержащей сульфат и хлорид натрия. Состав сточной воды (г/дм3): сульфат-ион - 28,7; хлорид-ион - 10,9; натрий - 21,6. Опыт проводили в стакане емкостью 1 литр с механическим перемешиванием. Условия проведения опытов аналогичны описанным в примере 2. Скорость фильтрации конечной пульпы определялась при фильтрации на вакуумной воронке при разряжении 0,06 МПа и при наращивании слоя кека до 15 мм. Результаты опыта приведены в таблице 5.

Таблица 1. (Наиболее близкий способ)
№ опытаУдельная мощность перемешивания,Продолжительность, рН пульпы на I стадииИзвлечение Fe в раствор,Содержание Ni в конечном кеке, Скорость фильтрации,
 Вт/м3 мин % %м3/м 2ч
1 50901,45 5,50,350,345
2700 901,414,5 0,3810,38
Таблица 2
№ опытаУдельная мощность перемешивания, Вт/м3Продолжительность II стадии,рН пульпы на I стадии Извлечение Fe в раствор, Содержание Ni в конечном кеке,Скорость фильтрации,
I стадия II стадияч% %м3/м 2ч
3 700107 1,335,10,141 0,763
4 700507 1,34,360,166 0,63
5 700907 1,35,20,15 0,48
6700 1507 1,326,10,145 0,41
7 7002057 1,319,030,129 0,375
8 7005007 1,336,090,182 0,192
9 500507 1,314,50,152 0,6
10 300507 1,324,30,153 0,4
11 700507 1,365,870,143 0,817
12 700507 1,452,880,204 0,589
13 700505 1,35,040,181 0,56
14 700503 1,36,80,181 0,44
Таблица 3
№ опытаУдельная мощность перемешивания, Вт/м3Продолжительность II стадиирН пульпы на I стадии Извлечение Fe в раствор,Содержание Ni в конечном кеке,Скорость фильтрации,
I стадияII стадия ч  %%м 3/м2ч
1570050 51,354,5 0,1760,419
16700200 51,384,5 0,2210,2
1730050 51,334,3 0,190,25
1870050 31,2812,0 0,1560,558
Таблица 4
№ оопытаУдельная мощность перемешивания, Вт/м3 Продолжительность II стадиирН пульпы на I стадииИзвлечение Fe в раствор, Содержание Ni в конечном кеке,Скорость фильтрации,
I стадия II стадияч  %% м3/м2ч
19700 5051,32 5,10,181,484
Таблица 5
№ опытаУдельная мощность перемешивания, Вт/м3Продолжительность II стадиирН пульпы на I стадии Извлечение Fe в раствор, Содержание Ni в конечном кеке,Скорость фильтрации,
I стадия II стадияч% %м3/м 2ч
13 700505 1,35,040,179 0,6

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Способ очистки гидролитических железистых кеков от никеля, включающий репульпацию кислотным раствором, содержащим соли щелочных металлов, при повышенной температуре и при поддержании рН пульпы 1,2-1,6, отличающийся тем, что репульпацию осуществляют в реакторах с механическим перемешиванием в две стадии, на первой стадии при удельной мощности перемешивания в пределах 500-1000 Вт/м 3, на второй - в пределах 5-100 Вт/м3 .

2. Способ по п.1, отличающийся тем, что рН пульпы поддерживают в интервале 1,3-1,4.

3. Способ по п.1 или 2, отличающийся тем, что время репульпации на первой стадии составляет не менее 30 мин, а на второй - 5-7 ч.

4. Способ по п.3, отличающийся тем, что при репульпации используют сточные воды, содержащие сульфат и хлорид натрия.

www.freepatent.ru


Смотрите также